如圖,在Rt△ABC中,AB=CB,BO⊥AC,
把△ABC折疊,使AB落在AC上,點(diǎn)B與AC上的
點(diǎn)E重合,展開后,折痕AD交BO于點(diǎn)F,連接DE、EF.
下列結(jié)論:①tan∠ADB=2;②圖中有4對全等三角形;
③若將△DEF沿EF折疊,則點(diǎn)D不一定落在AC上;
④BD=BF;⑤,上述結(jié)論中正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
B
【解析】①由折疊可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①錯誤;
②圖中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折疊可知)
∵OB⊥AC,∴∠AOB=∠COB=90°,
在Rt△AOB和Rt△COB中,
,
∴Rt△AOB≌Rt△COB(HL),
則全等三角形共有4對,故②正確;
③∵AB=CB,BO⊥AC,把△ABC折疊,
∴∠ABO=∠CBO=45°,∠FBD=∠DEF,
∴∠AEF=∠DEF=45°,∴將△DEF沿EF折疊,可得點(diǎn)D一定在AC上,故③錯誤;
④∵OB⊥AC,且AB=CB,
∴BO為∠ABC的平分線,即∠ABO=∠OBC=45°,
由折疊可知,AD是∠BAC的平分線,即∠BAF=22.5°,
又∵∠BFD為三角形ABF的外角,
∴∠BFD=∠ABO+∠BAF=67.5°,
易得∠BDF=180°﹣45°﹣67.5°=67.5°,
∴∠BFD=∠BDF,
∴BD=BF,故④正確;
⑤連接CF,∵△AOF和△COF等底同高,
∴S△AOF=S△COF,
∵∠AEF=∠ACD=45°,
∴EF∥CD,
∴S△EFD=S△EFC,
∴S四邊形DFOE=S△COF,
∴S四邊形DFOE=S△AOF,
故⑤正確;
正確的有3個,
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com