分析 (1)先計(jì)算判別式,再進(jìn)行配方得到△=(a+1)2+4,然后根據(jù)非負(fù)數(shù)的性質(zhì)得到△>0,再利用判別式的意義即可得到方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)根據(jù)根與系數(shù)的關(guān)系得到x1+x2=-(a+3),x1x2=a+1,再利用完全平方公式由x12+x22=10得(x1+x2)2-2x1x2=10,則(a+3)2-2(a+1)=10,然后解關(guān)于a的方程即可.
解答 (1)證明:△=(a+3)2-4(a+1)
=a2+6a+9-4a-4
=a2+2a+5
=(a+1)2+4,
∵(a+1)2≥0,
∴(a+1)2+4>0,即△>0,
∴方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)解:根據(jù)題意得x1+x2=-(a+3),x1x2=a+1,
∵x12+x22=10,
∴(x1+x2)2-2x1x2=10,
∴(a+3)2-2(a+1)=10,
整理得a2+4a-3=0,解得a1=-2+$\sqrt{7}$,a2=-2-$\sqrt{7}$,
即a的值為-2+$\sqrt{7}$或-2-$\sqrt{7}$.
點(diǎn)評(píng) 本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2=-$\frac{a}$,x1x2=$\frac{c}{a}$.也考查了根的判別式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (b-2,-a) | B. | (b+2,-a) | C. | (-a+2,-b) | D. | (-a-2,-b) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com