分析 (1)根據(jù)正方形的性質和全等三角形的性質即可得到結論;
(2)根據(jù)四邊形ABCD是菱形和∠ABC=120°,推出AC⊥BD,∠ABO=60°,根據(jù)余角的性質得到∠AFO=∠BEA,又因為∠AOF=∠BOE=90°,推出三角形相似,即可得到結論;
(3)根據(jù)垂直的定義得到∠AGB=∠AOB=90°,推出A,G,B,O四點共圓,根據(jù)圓內接四邊形的性質得到∠GAO=∠GAO,推出△AOF∽△BOE,即可得到結論.
解答 解:(1)AF=BE;
∵四邊形ABCD是正方形,
∴∠AOB=∠BOC=90°,AO=BO,
∵AG⊥BE,∠AFO=∠BFG,
∴∠FAO=∠FBG,
在△AFO與△BFO中,
$\left\{\begin{array}{l}{∠AOF=∠BOE}\\{∠FAO=∠FBG}\\{AO=BO}\end{array}\right.$,
∴△AFO≌△BFO,
∴AF=BE;
故答案為:AF=BE;
(2)∵四邊形ABCD是菱形,∠ABC=120°,
∴AC⊥BD,∠ABO=60°,
∴∠FAO+∠AFO=90°,
∵AG⊥BE,
∴∠EAG+∠BEA=90°,
∴∠AFO=∠BEA,
又∵∠AOF=∠BOE=90°,
∴△AOF∽△BOE,
∴$\frac{AF}{BE}$=$\frac{AO}{OB}$,
∵∠ABO=60°,AC⊥BD,
∴$\frac{AO}{OB}$=tan60°=$\sqrt{3}$,
∴$\frac{AF}{BE}$=$\sqrt{3}$;
(3)如圖3,∵AG⊥BE,AC⊥BD,
∴∠AGB=∠AOB=90°,
∴A,G,B,O四點共圓,
∴∠GAO=∠GAO,
∴∠AOF=∠BOE=90°,
∴△AOF∽△BOE,
∴$\frac{AF}{BE}$=$\frac{AO}{OB}$,
∵∠ABO=∠ABC-∠OBC=α-β,AC⊥BD,
∴$\frac{AO}{OB}$=tan(α-β),
∴$\frac{AF}{BE}$=tan(α-β).
故答案為:tan(α-β).
點評 本題考查了正方形的性質,全等三角形的判定與性質,菱形的性質,相似三角形的判定和性質,四點共圓,熟記定理是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 3個 | B. | 4個 | C. | 5個 | D. | 6個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com