【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子AC斜靠在右墻,測(cè)得梯子頂端距離地面AB2米,梯子與地面夾角α的正弦值sinα0.8.梯子底端位置不動(dòng),將梯子斜靠在左墻時(shí),頂端距離地面2.4米,則小巷的寬度為( )

A. 0.7B. 1.5

C. 2.2D. 2.4

【答案】C

【解析】

先根據(jù)α的正弦值sinα=0.8求出AC的長(zhǎng),再由勾股定理可得出BC、CD的長(zhǎng),進(jìn)而可得出結(jié)論.

解:在RtACB中,

∵∠ACB=90°,AB=0.7米,sinα0.8

AC=CE==2.5

BC= =1.5()

RtCDE中,∵∠EDC=90°,DE=2.4米,DE2+CD2=CE2

2.42+CD2=2.52,

CD2=0.49,

CD0,

CD=0.7(米),

CD=BC+BD=0.7+1.5=2.2(米).

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,點(diǎn)DE分別在AB、AC上,,,

求證:

,把繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到圖2的位置,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn),連接MN,PM,PN

判斷的形狀,并說明理由;

繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若,,試問面積是否存在最大值;若存在,求出其最大值若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,D是底邊BC的中點(diǎn),作DEABE,DFACF

求證:DEDF

證明:∵ABAC,∴∠B=∠C①.

BDECDF中,∠B=∠C,∠BED=∠CFD,BDCD,∴△BDE≌△CDF②.∴DEDF③.

1)上面的證明過程是否正確?若正確,請(qǐng)寫出①、②和③的推理根據(jù).

2)請(qǐng)你寫出另一種證明此題的方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列給出的方程中,屬于一元二次方程的是(

A. xx1)=6B. x2+0C. x3)(x2)=x2D. ax2+bx+c0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)香洲區(qū)全面推進(jìn)書香校園建設(shè)的號(hào)召,班長(zhǎng)小青隨機(jī)調(diào)查了若干同學(xué)一周課外閱讀的時(shí)間t(單位:小時(shí)),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖(A:0t7,B:7t14,C:14t21,D:t21),根據(jù)圖中信息,解答下列問題:

(1)這項(xiàng)工作中被調(diào)查的總?cè)藬?shù)是多少?

(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出表示A組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù);

(3)如果小青想從D組的甲、乙、丙、丁四人中先后隨機(jī)選擇兩人做讀書心得發(fā)言代表,請(qǐng)用列表或樹狀圖的方法求出恰好選中甲的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2(m1)x(m21)0

(1)若該方程有實(shí)數(shù)根,求m的值.

(2)對(duì)于函數(shù)y1x2(m1)x(m21),當(dāng)x1時(shí),y1隨著x的增大而增大.

①求m的范圍.

②若函數(shù)y22xn與函數(shù)交于y軸上同一點(diǎn),求n的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)P,直線BF與AD的延長(zhǎng)線交于點(diǎn)F,且∠AFB=∠ABC.

(1)求證:直線BF是⊙O的切線.

(2)若CD=2,OP=1,求線段BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y-x+2分別交x軸、y軸于點(diǎn)A、B,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、B.點(diǎn)Px軸上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作垂直于x軸的直線分別交拋物線和直線AB于點(diǎn)E和點(diǎn)F.設(shè)點(diǎn)P的橫坐標(biāo)為m

1)點(diǎn)A的坐標(biāo)為   

2)求這條拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式.

3)點(diǎn)P在線段OA上時(shí),若以B、EF為頂點(diǎn)的三角形與△FPA相似,求m的值.

4)若E、FP三個(gè)點(diǎn)中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),稱EF、P三點(diǎn)為“共諧點(diǎn)”.直接寫出EF、P三點(diǎn)成為“共諧點(diǎn)”時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD和正方形AEFG中,邊AE在邊AB上,AB=,AE=1.將正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),設(shè)BE的延長(zhǎng)線交直線DG于點(diǎn)P,當(dāng)點(diǎn)P,G第一次重合時(shí)停止旋轉(zhuǎn).在這個(gè)過程中:

1)∠BPD=______度;

2)點(diǎn)P所經(jīng)過的路徑長(zhǎng)為______

查看答案和解析>>

同步練習(xí)冊(cè)答案