【題目】如圖,等邊△ABC的邊長為10,點M是邊AB上一動點,將等邊△ABC沿過點M的直線折疊,該直線與直線AC交于點N,使點A落在直線BC上的點D處,且BD:DC=1:4,折痕為MN,則AN的長為

【答案】7或
【解析】解:①當點A落在如圖1所示的位置時,

∵△ACB是等邊三角形,

∴∠A=∠B=∠C=∠MDN=60°,

∵∠MDC=∠B+∠BMD,∠B=∠MDN,

∴∠BMD=∠NDC,

∴△BMD∽△CDN.

∴得 = = ,

∵DN=AN,

∴得 = = ,

∵BD:DC=1:4,BC=10,

∴DB=2,CD=8,

設AN=x,則CN=10﹣x,

= = ,

∴DM= ,BM=

∵BM+DM=30,

+ =10,

解得x=7,

∴AN=7;

②當A在CB的延長線上時,如圖2,

與①同理可得△BMD∽△CDN.

∴得 = =

∵BD:DC=1:4,BC=10,

∴DB= ,CD= ,

設AN=x,則CN=x﹣10,

= = ,

∴DM= ,BM= ,

∵BM+DM=10,

+ =10,

解得:x=

∴AN=

所以答案是:7或

【考點精析】通過靈活運用翻折變換(折疊問題)和相似三角形的判定與性質,掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知點A00),B0,4),C3,t+4),D3t. Nt)為ABCD內部(不含邊界)整點的個數(shù),其中整點是指橫坐標和縱坐標都是整數(shù)的點,則Nt)所有可能的值為

A. 6、7B. 78C. 6、78D. 68、9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD和CEFG的邊長分別為m、n,那么△AEG的面積的值( )

A.與m、n的大小都有關
B.與m、n的大小都無關
C.只與m的大小有關
D.只與n的大小有關

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從1、2、3、4中任取一個數(shù)作為十位上的數(shù)字,再從余下的數(shù)字中任取一個數(shù)作為個位上的數(shù)字,那么組成的兩位數(shù)是6的倍數(shù)的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)解不等式,并把它的解集在數(shù)軸上表示出來.

2)解方程組

3)解方程組

4)解不等式組

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE△BC′F的周長之和為(  )

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知MB=ND,∠MBA=NDC,下列哪個條件不能判定ABM≌△CDN

A.AM=CNB.AB=CD C.AMCN D.M=N

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y= (x+2)(x﹣4)與x軸交于點A,B(點A位于點B的左側),與y軸交于點C,CD∥x軸交拋物線于點D,M為拋物線的頂點.

(1)求點A,B,C的坐標;
(2)設動點N(﹣2,n),求使MN+BN的值最小時n的值;
(3)P是拋物線上一點,請你探究:是否存在點P,使以P,A,B為頂點的三角形與△ABD相似(△PAB與△ABD不重合)?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,正方形OABC的頂點B在第一象限,頂點A,C分別在x軸和y軸上,直線l1:x=4與直線l2:y=4相交于點E,以點E為頂點的拋物線K經(jīng)過點B(6,6).

(1)求拋物線K的解析式.
(2)點P是線段OC上一點,點O關于AP的對稱點為M,
①若點M落在直線l1或l2上時,將拋物線向下或向上平移多少,使其頂點落在AM上;
②若點M落在拋物線上,請直接寫出一個符合題意的點P的坐標.

查看答案和解析>>

同步練習冊答案