分析 (1)首先根據(jù)AB2-AC2=AD2,可得AB2-AD2=AC2;然后在Rt△ABD中,由勾股定理,可得AB2-AD2=BD2,據(jù)此推得AC=BD;最后根據(jù)tanB=$\frac{AD}{BD}$,sinC=$\frac{AD}{AC}$,推得tanB=sinC即可.
(2)首先在Rt△ABC中,由勾股定理,可得AB2+AC2=BC2;然后根據(jù)S△ABC=$\frac{1}{2}$AB.AC=$\frac{1}{2}$BC.AD,推得AB.AC=BC.AD,再根據(jù)AC=BD,推得$\frac{1}{A{B}^{2}}+\frac{1}{B{D}^{2}}=\frac{1}{A{D}^{2}}$即可.
(3)猜想DE與DC的數(shù)量關(guān)系是:DE=2DC.首先過(guò)點(diǎn)B作∠ABC的平分線交DE于點(diǎn)F,根據(jù)相似三角形判定的方法,判斷出△BDE∽△BCA,即可推得$\frac{BD}{BC}=\frac{BE}{BA}$;然后根據(jù)AB=BC,可得BD=BE,再根據(jù)BF是∠ABC的平分線,可得BF⊥DE,所以DE=2DF;最后根據(jù)全等三角形判定的方法,判斷出△BDF≌△ACD,即可推得DF=DC,據(jù)此判斷出DE=2DC即可.
解答 (1)證明:如圖1,,
∵AB2-AC2=AD2,
∴AB2-AD2=AC2,
在Rt△ABD中,
AB2-AD2=BD2,
∴AC=BD,
又∴tanB=$\frac{AD}{BD}$,sinC=$\frac{AD}{AC}$,
∴tanB=sinC.
(2)證明:如圖2,,
∵∠BAC=90°,
∴AB2+AC2=BC2,
∵S△ABC=$\frac{1}{2}$AB.AC=$\frac{1}{2}$BC.AD,
∴AB.AC=BC.AD,
由(1),可得
AC=BD,
∴$\frac{1}{{AB}^{2}}$+$\frac{1}{{BD}^{2}}$
=$\frac{1}{{AB}^{2}}$+$\frac{1}{{AC}^{2}}$
=$\frac{{AB}^{2}{+AC}^{2}}{{AB}^{2}{•AC}^{2}}$
=$\frac{{BC}^{2}}{{AB}^{2}{•AC}^{2}}$
=$\frac{{BC}^{2}}{{BC}^{2}{•AD}^{2}}$
=$\frac{1}{{AD}^{2}}$
∴$\frac{1}{A{B}^{2}}+\frac{1}{B{D}^{2}}=\frac{1}{A{D}^{2}}$.
(3)解:猜想DE與DC的數(shù)量關(guān)系是:DE=2DC.
證明:如圖3,過(guò)點(diǎn)B作∠ABC的平分線交DE于點(diǎn)F,,
∵DE∥AC,
∴∠BDE=∠C,
在△BDE和△BCA中,
$\left\{\begin{array}{l}{∠BDE=∠C}\\{∠DBE=∠CBA}\end{array}\right.$
∴△BDE∽△BCA,
∴$\frac{BD}{BC}=\frac{BE}{BA}$,
∵AB=BC,
∴BD=BE.
又∵BF是∠ABC的平分線,
∴BF⊥DE,
∴DE=2DF,
由(1),可得AC=BD,
在△BDF和△ACD中,
$\left\{\begin{array}{l}{∠BDF=∠ACD}\\{∠BFD=∠ADC}\\{BD=AC}\end{array}\right.$
∴△BDF≌△ACD,
∴DF=DC,
又∵DE=2DF,
∴DE=2DC.
點(diǎn)評(píng) (1)此題主要考查了三角形相似的判定和性質(zhì)的應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:①三邊法:三組對(duì)應(yīng)邊的比相等的兩個(gè)三角形相似;②兩邊及其夾角法:兩組對(duì)應(yīng)邊的比相等且?jiàn)A角對(duì)應(yīng)相等的兩個(gè)三角形相似;③兩角法:有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似.
(2)此題還考查了全等三角形的判定和性質(zhì)的應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:①判定定理1:SSS--三條邊分別對(duì)應(yīng)相等的兩個(gè)三角形全等.②判定定理2:SAS--兩邊及其夾角分別對(duì)應(yīng)相等的兩個(gè)三角形全等.③判定定理3:ASA--兩角及其夾邊分別對(duì)應(yīng)相等的兩個(gè)三角形全等.④判定定理4:AAS--兩角及其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等.⑤判定定理5:HL--斜邊與直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 兩個(gè)等邊三角形一定全等 | B. | 面積相等的兩個(gè)三角形全等 | ||
C. | 形狀相同的兩個(gè)三角形全等 | D. | 全等三角形的面積一定相等 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com