【題目】如圖,四邊形ABCD中,A=ABC=90°,AD=10cm,BC=30cm,E是邊CD的中點(diǎn),連接BE并延長(zhǎng)與AD的延長(zhǎng)線相交于點(diǎn)F.

(1)求證:四邊形BDFC是平行四邊形;

(2)若BCD是等腰三角形,求四邊形BDFC的面積.

【答案】(1)證明見(jiàn)解析;(2)cm2cm2

【解析】

試題分析:(1)根據(jù)同旁內(nèi)角互補(bǔ)兩直線平行求出BCAD,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得CBE=DFE,然后利用“角角邊”證明BEC和FCD全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BE=EF,然后利用對(duì)角線互相平分的四邊形是平行四邊形證明即可;

(2)分三種情況:①BC=BD時(shí),由勾股定理列式求出AB,由平行四邊形的面積公式列式計(jì)算即可得解;

②BC=CD時(shí),過(guò)點(diǎn)C作CGAF于G,證出四邊形AGCB是矩形,由矩形的對(duì)邊相等得AG=BC=3,求出DG=2,由勾股定理列式求出CG,由平行四邊形的面積列式計(jì)算即可;

③BD=CD時(shí),BC邊上的中線應(yīng)該與BC垂直,從而得到BC=2AD=2,矛盾.

試題解析:(1)證明:∵∠A=ABC=90°,BCAD,∴∠CBE=DFE,在BEC與FED中,∵∠CBE=DFE,BEC=FED,CE=DE,∴△BEC≌△FED(AAS),BE=FE,又E是邊CD的中點(diǎn),CE=DE,四邊形BDFC是平行四邊形;

(2)解:分三種情況:①BC=BD=30cm時(shí),由勾股定理得,AB===(cm),四邊形BDFC的面積==(cm2);

②BC=CD=30時(shí),過(guò)點(diǎn)C作CGAF于G,如圖所示:

則四邊形AGCB是矩形,AG=BC=30,DG=AG﹣AD=30﹣10=20,由勾股定理得,CG===,四邊形BDFC的面積==;

③BD=CD時(shí),BC邊上的中線應(yīng)該與BC垂直,從而得到BC=2AD=20,矛盾,此時(shí)不成立;

綜上所述,四邊形BDFC的面積是cm2cm2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的一元二次方程ax2-bx+4=0的解是x=2,2019+2a-b的值是( )

A.2015B.2017C.2019D.2021

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一塊等腰直角三角形鐵板,通過(guò)切割焊接成一個(gè)含有45°角的平行四邊形,設(shè)計(jì)一種簡(jiǎn)要的方案并給出正確的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、O、E在同一直線上,∠AOB=40°,∠COD=28°,OD平分∠COE.

(1)求∠COB的度數(shù);
(2)求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,D是BC邊的中點(diǎn),E、F分別在AD及其延長(zhǎng)線上,CE∥BF,連結(jié)BE、CF.

(1)圖中的四邊形BFCE是平行四邊形嗎?為什么?
(2)若AB=AC,其它條件不變,那么四邊形BFCE是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列語(yǔ)句:

①對(duì)頂角不相等;②今天天氣很熱!;③同位角相等;④畫(huà)∠AOB的平分線OC;⑤這個(gè)角等于30°嗎?在這些語(yǔ)句是,屬于命題的是_______(填寫(xiě)序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中∠C=90°,線段AD是△ABC的角平分線,直線DE是線段AB的垂直平分線.若DE=1cm,DB=2cm,AC= cm.求點(diǎn)C到直線AD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公園元旦期間,前往參觀的人非常多.這期間某一天某一時(shí)段,隨機(jī)調(diào)查了部分入園游客,統(tǒng)計(jì)了他們進(jìn)園前等候檢票的時(shí)間,并繪制成如下圖表.表中“10~20”表示等候檢票的時(shí)間大于或等于10min而小于20min,其它類(lèi)同.

(1)這里采用的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),樣本容量是
(2)表中a= , b= , 并請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)在調(diào)查人數(shù)里,若將時(shí)間分段內(nèi)的人數(shù)繪成扇形統(tǒng)計(jì)圖,則“40~50”的圓心角的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90度.

(1)請(qǐng)你數(shù)一數(shù),圖中有多少個(gè)角;
(2)求出∠BOD的度數(shù);
(3)請(qǐng)通過(guò)計(jì)算說(shuō)明OE是否平分∠BOC.

查看答案和解析>>

同步練習(xí)冊(cè)答案