【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,AD=10cm,BC=30cm,E是邊CD的中點(diǎn),連接BE并延長(zhǎng)與AD的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
【答案】(1)證明見(jiàn)解析;(2)cm2或cm2.
【解析】
試題分析:(1)根據(jù)同旁內(nèi)角互補(bǔ)兩直線平行求出BC∥AD,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠CBE=∠DFE,然后利用“角角邊”證明△BEC和△FCD全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BE=EF,然后利用對(duì)角線互相平分的四邊形是平行四邊形證明即可;
(2)分三種情況:①BC=BD時(shí),由勾股定理列式求出AB,由平行四邊形的面積公式列式計(jì)算即可得解;
②BC=CD時(shí),過(guò)點(diǎn)C作CG⊥AF于G,證出四邊形AGCB是矩形,由矩形的對(duì)邊相等得AG=BC=3,求出DG=2,由勾股定理列式求出CG,由平行四邊形的面積列式計(jì)算即可;
③BD=CD時(shí),BC邊上的中線應(yīng)該與BC垂直,從而得到BC=2AD=2,矛盾.
試題解析:(1)證明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC與△FED中,∵∠CBE=∠DFE,∠BEC=∠FED,CE=DE,∴△BEC≌△FED(AAS),∴BE=FE,又∵E是邊CD的中點(diǎn),∴CE=DE,∴四邊形BDFC是平行四邊形;
(2)解:分三種情況:①BC=BD=30cm時(shí),由勾股定理得,AB===(cm),∴四邊形BDFC的面積==(cm2);
②BC=CD=30時(shí),過(guò)點(diǎn)C作CG⊥AF于G,如圖所示:
則四邊形AGCB是矩形,∴AG=BC=30,∴DG=AG﹣AD=30﹣10=20,由勾股定理得,CG===,∴四邊形BDFC的面積==;
③BD=CD時(shí),BC邊上的中線應(yīng)該與BC垂直,從而得到BC=2AD=20,矛盾,此時(shí)不成立;
綜上所述,四邊形BDFC的面積是cm2或cm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的一元二次方程ax2-bx+4=0的解是x=2,則2019+2a-b的值是( )
A.2015B.2017C.2019D.2021
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一塊等腰直角三角形鐵板,通過(guò)切割焊接成一個(gè)含有45°角的平行四邊形,設(shè)計(jì)一種簡(jiǎn)要的方案并給出正確的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、O、E在同一直線上,∠AOB=40°,∠COD=28°,OD平分∠COE.
(1)求∠COB的度數(shù);
(2)求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是BC邊的中點(diǎn),E、F分別在AD及其延長(zhǎng)線上,CE∥BF,連結(jié)BE、CF.
(1)圖中的四邊形BFCE是平行四邊形嗎?為什么?
(2)若AB=AC,其它條件不變,那么四邊形BFCE是菱形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列語(yǔ)句:
①對(duì)頂角不相等;②今天天氣很熱!;③同位角相等;④畫(huà)∠AOB的平分線OC;⑤這個(gè)角等于30°嗎?在這些語(yǔ)句是,屬于命題的是_______(填寫(xiě)序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中∠C=90°,線段AD是△ABC的角平分線,直線DE是線段AB的垂直平分線.若DE=1cm,DB=2cm,AC= cm.求點(diǎn)C到直線AD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園元旦期間,前往參觀的人非常多.這期間某一天某一時(shí)段,隨機(jī)調(diào)查了部分入園游客,統(tǒng)計(jì)了他們進(jìn)園前等候檢票的時(shí)間,并繪制成如下圖表.表中“10~20”表示等候檢票的時(shí)間大于或等于10min而小于20min,其它類(lèi)同.
(1)這里采用的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),樣本容量是;
(2)表中a= , b= , 并請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)在調(diào)查人數(shù)里,若將時(shí)間分段內(nèi)的人數(shù)繪成扇形統(tǒng)計(jì)圖,則“40~50”的圓心角的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90度.
(1)請(qǐng)你數(shù)一數(shù),圖中有多少個(gè)角;
(2)求出∠BOD的度數(shù);
(3)請(qǐng)通過(guò)計(jì)算說(shuō)明OE是否平分∠BOC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com