【題目】定義:有一組鄰邊相等且對角互補的四邊形叫做等補四邊形.

理解:

如圖1,點上,的平分線交于點,連接求證:四邊形是等補四邊形;

探究:

如圖2,在等補四邊形連接是否平分請說明理由.

運用:

如圖3,在等補四邊形中,,其外角的平分線交的延長線于點的長.

【答案】(1)證明見解析;(2)平分,理由見解析;(3.

【解析】

由圓內接四邊形互補可知,再證,即可根據等補四邊形的定義得出結論;

過點分別作于點,垂直的延長線于點,證,得到,根據角平分線的判定可得出結論;

連接,先證推出再證利用相似三角形對應邊的比相等可求出的長.

證明:四邊形為圓內接四邊形,

四邊形是等補四邊形;

平分,理由如下:

如圖2,過點分別作于點,垂直的延長線于點,則,

四邊形是等補四邊形,

的平分線,即平分

如圖3,連接,

四邊形是等補四邊形,

,

平分

知,平分

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在銳角中,,,,將繞點按逆時針方向旋轉,得到

1)如圖1,當點在線段的延長線上時,求的度數(shù);

2)如圖2,連接.若的面積為4,求的面積;

3)如圖3,點為線段中點,點是線段上的動點,在繞點按逆時針方向旋轉過程中,點的對應點是點,求線段長度的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,拋物線的頂點為,經過拋物線上的兩點的直線交拋物線的對稱軸于點

1)求拋物線的解析式和直線的解析式.

2)在拋物線上兩點之間的部分(不包含兩點),是否存在點,使得?若存在,求出點的坐標;若不存在,請說明理由.

3)若點在拋物線上,點軸上,當以點為頂點的四邊形是平行四邊形時,直接寫出滿足條件的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解居民的環(huán)保意識,社區(qū)工作人員在光明小區(qū)隨機抽取了若干名居民開展主題為打贏藍天保衛(wèi)戰(zhàn)的環(huán)保知識有獎問答活動,并用得到的數(shù)據繪制了如圖條形統(tǒng)計圖(得分為整數(shù),滿分為10分,最低分為6分)

請根據圖中信息,解答下列問題:

(1)本次調查一共抽取了   名居民;

(2)求本次調查獲取的樣本數(shù)據的平均數(shù)、眾數(shù)和中位數(shù);

(3)社區(qū)決定對該小區(qū)500名居民開展這項有獎問答活動,得10分者設為一等獎,請你根據調查結果,幫社區(qū)工作人員估計需準備多少份一等獎獎品?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組研究我國古代《算法統(tǒng)宗》里這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每一間客房住7人,那么有7人無房可;如果每一間客房住9人,那么就空出一間房.

(1)求該店有客房多少間?房客多少人?

(2)假設店主李三公將客房進行改造后,房間數(shù)大大增加.每間客房收費20錢,且每間客房最多入住4人,一次性定客房18間以上(含18間),房費按8折優(yōu)惠.若詩中“眾客”再次一起入住,他們如何訂房更合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解“停課不停學”期間,學生對線上學習方式的偏好情況,某校隨機拍取40名學生進行問卷調查,其統(tǒng)計結果如表:

最喜歡的線上學習方式(沒人最多選一種)

人數(shù)

直播

10

錄播

資源包

5

線上答疑

8

合計

40

(1) ;

(2)若將選取各種“最喜歡的線上學習方式”的人數(shù)所占比例繪制成扇形統(tǒng)計圖,求直播"對應扇形的圓心角度數(shù);

(3)根據調查結果估計該校10000名學生中,最喜歡“線上答疑”的學生人數(shù);

(4)在最喜歡“資源包”的學生中,有2名男生,3名女生.現(xiàn)從這5名學生中隨機抽取2名學生介紹學習經驗,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠1=2,AD=AE,∠B=ACE,且B、C、D三點在一條直線上,

1)試說明△ABD與△ACE全等的理由;

2)如果∠B=60°,試說明線段AC、CE、CD之間的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:有三條邊相等的四邊形稱為三等邊四邊形.

1)如圖①,平行四邊形中,對角線平分,將線段繞點旋轉一個角度,連接

①求證:四邊形是三等邊四邊形;

②如圖②,連接.求證:;

2)如圖,在(1)的條件下,設交于點,,,求以為邊的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交于A,B兩點,與y軸交于點C0,﹣2),點A的坐標是(20),P為拋物線上的一個動點,過點PPDx軸于點D,交直線BC于點E,拋物線的對稱軸是直線x=﹣1

1)求拋物線的函數(shù)表達式;

2)若點P在第二象限內,且PEOD,求△PBE的面積.

3)在(2)的條件下,若M為直線BC上一點,在x軸的上方,是否存在點M,使△BDM是以BD為腰的等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案