12.求x的值 
(1)x2-49=0;             
(2)4x2-1=0;      
(3)x3-8=0.

分析 (1)根據(jù)移項(xiàng),可得乘方的形式,根據(jù)開方,可得答案;
(2)根據(jù)移項(xiàng),等式的性質(zhì),可得乘方的形式,根據(jù)開方,可得答案;
(3)根據(jù)移項(xiàng),可得乘方的形式,根據(jù)開立方,可得答案.

解答 解:(1)x2-49=0;             
x2=49,
x=±7;             
(2)4x2-1=0;
4x2=1,
x2=$\frac{1}{4}$,
x=$±\frac{1}{2}$;      
(3)x3-8=0,
x3=8,
x=2.

點(diǎn)評(píng) 此題主要考查了立方根和平方根的計(jì)算,熟練掌握定義是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,已知AB∥CF,E為DF的中點(diǎn),若AB=7cm,CF=4cm,則BD=3cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖,在y軸正半軸上依次截取OA1=A1A2=A2A3=…=An-1An=1(n為正整數(shù)),過(guò)點(diǎn)A1,A2,A3,…,An分別作y軸的垂線,與反比例函數(shù)y=$\frac{2}{x}$(x>0)交于P1,P2,P3,…,Pn,連接P1P2,P2P3,P3P4,…,Pn-1Pn,過(guò)點(diǎn)P2、P3、…、Pn分別向P1A1、P2A2、…、Pn-1An-1作垂線段,構(gòu)成一列三角形(見(jiàn)圖中陰影部分),記這一系列三角形的面積分別為S1,S2,S3,…,Sn,則S1+S2+S3+…+Sn-1=1-$\frac{1}{n}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.解方程:
(1)$\sqrt{x+5}$+x=7
(2)$\frac{2}{x-1}$+$\frac{2}{x+2}$=1
(3)$\frac{x}{x-1}$-$\frac{2x-2}{x}$-1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若Rt△ABC中,∠C=90°且c=10,a=8,則b=(  )
A.8B.6C.9D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知△ABC≌△DEF,在△ABC中,∠ACB=90°,BC=3,AC=4.現(xiàn)將這兩個(gè)全等的直角三角形按圖①所示位置擺放,點(diǎn)A與點(diǎn)E重合,直角邊AC與EF在同一直線上,如圖②,現(xiàn)固定△ABC,將△DEF沿射線AC方向平行移動(dòng),運(yùn)動(dòng)過(guò)程中,直線DE與直線AB交于點(diǎn)M,點(diǎn)N是線段AC的中點(diǎn),當(dāng)點(diǎn)E運(yùn)動(dòng)到點(diǎn)N時(shí)停止運(yùn)動(dòng).設(shè)AM=x.

(1)如圖①,求點(diǎn)A與點(diǎn)E重合時(shí)兩三角形重疊部分的面積;
(2)在△DEF運(yùn)動(dòng)過(guò)程中,△AMN能不能是以MN為腰的等腰三角形?若不能,請(qǐng)說(shuō)明理由;若能,求出對(duì)應(yīng)的x的值;
(3)在△DEF運(yùn)動(dòng)過(guò)程中,設(shè)兩個(gè)三角形重疊部分面積為y,直接寫出y與x的函數(shù)解析式及對(duì)應(yīng)的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,矩形ABCD中,AB=4$\sqrt{3}$,∠ACB=30°,△EFG為邊長(zhǎng)8的等邊三角形,將△EFG按圖①位置擺放,點(diǎn)F在CB延長(zhǎng)線上,點(diǎn)B、點(diǎn)G重合.現(xiàn)將△EFG向右以每秒2個(gè)單位長(zhǎng)度的速度平移,直至點(diǎn)G與點(diǎn)C重合時(shí)停止.設(shè)平移時(shí)間為t秒.
(1)求出點(diǎn)G與點(diǎn)C重合時(shí)t的值;
(2)記平移過(guò)程中△EFG與△ABC的重合部分面織為S,直接寫出S與t的函數(shù)關(guān)系式及相應(yīng)的t的取值范圍;(t>0);
(3)如圖②,點(diǎn)H、點(diǎn)I分別為AB、BC中點(diǎn),在△EFG向右平移過(guò)程中(點(diǎn)G與點(diǎn)C重合時(shí)停止平移),是否存在點(diǎn)F使得△FHI為等腰三角形?若存在,求出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,在梯形ABCD中,AD∥BC,∠B=45°,點(diǎn)E是AB的中點(diǎn),DE=DC,∠EDC=90°,若AB=2,則AD的長(zhǎng)是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.計(jì)算
(1)(-6)2×[-$\frac{5}{12}$+(-$\frac{4}{9}$)]
(2)0-23÷(-4)3-$\frac{1}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案