①已知a2+2a+1=0,求2a2+4a-3的值.
②已知關(guān)于x的一元二次方程 x2-(k+2)x+k-2=0,求證:此方程總有兩個(gè)不相等的實(shí)數(shù)根.

①解:∵a2+2a+1=0,
∴a2+2a=-1,
∴2a2+4a-3=2(a2+2a)-3=2×(-1)-3=-5;
證明:△=(k+2)2-4(k-2)=k2+4k+4-4k+8=k2+8,
∵k2≥0,
∴k2+8>0,即△>0,
∴此方程總有兩個(gè)不相等的實(shí)數(shù)根.
分析:①先由a2+2a+1=0變形得到a2+2a=-1,再變形2a2+4a-3得到2(a2+2a)-3,然后利用整體思想計(jì)算;
②先計(jì)算△=(k+2)2-4(k-2)=k2+4k+4-4k+8=k2+8,由于k2≥0,則k2+8>0,即△>0,然后根據(jù)△的意義即可得到結(jié)論.
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.也考查了代數(shù)式的計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、已知a2+2a+1=0,則2a2+4a-3的值為
-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•房山區(qū)一模)已知a2+2a-15=0,求
a-1
a+2
a2-4
a2-2a+1
+
1
a+3
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•平遙縣模擬)(1)計(jì)算:2•sin60°+|-3|-
12
-
1
3
-1
(2)已知a2+2a=-1,求2a(a+1)-(a+2)(a-2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知a2+2a+b2-4b+5=0,求(a-b)(a+b)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知a2-2a+b2+4b+5=0,則ab=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案