如圖,已知邊長為4的正方形ABCD,點(diǎn)E在AB上,點(diǎn)F在BC的延長線上,EF與AC交于點(diǎn)H,且AE=CF=m,則四邊形EBFD的面積為
16
16
;△AHE與△CHF的面積的和為
2m
2m
(用含m的式子表示).
分析:求四邊形EBFD的面積,需先證△AED≌△CFD,則四邊形EBFD的面積=正方形ABCD的面積;求△AHE與△CHF的面積的和,需作出這兩個(gè)三角形的高,并延長其中一條,證明兩條高的和為正方形的邊長即可.
解答:解:(1)∵四邊形ABCD是正方形,
∴AD=CD,∠EAD=∠FCD=90°,
又∵AE=CF(已知)
∴△AED≌△CFD(SAS),
∴四邊形EBFD的面積=正方形ABCD的面積=4×4=16;
(2)
如圖,過H點(diǎn)分別作HN⊥AB,HM⊥BC,垂足分別為M,N,并延長NH交CD于Q,
∵四邊形ABCD是正方形,
∴AC平分∠BCD,AB∥CD,
又∵HN⊥AB,
∴HQ⊥CD,
又∵HM⊥BC,
∴HM=HQ(角平分線上的任意一點(diǎn)到角的兩邊的距離相等)
∵S△AHE=
1
2
AE×NH,S△CEF=
1
2
CF×HM,AE=CF=m,HQ+HN=AB=4
∴S△AHE+S△CHF
=
1
2
﹙HQ+HM﹚×m
=
1
2
×4×m
=2m.
故答案為:16;2m.
點(diǎn)評(píng):此題綜合考查了正方形的性質(zhì)、全等三角形的判定以及面積計(jì)算等知識(shí),要靈活應(yīng)用,有難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知邊長為4的正方形ABCD中,E為AD中點(diǎn),P為CE中點(diǎn),F(xiàn)為BP中點(diǎn),F(xiàn)H⊥BC交BC于H,連接PH,則下列結(jié)論正確的是( 。
①BE=CE;②sin∠EBP=
1
2
;③HP∥BE;④HF=1;⑤S△BFD=1.
A、①④⑤B、①②③
C、①②④D、①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知邊長為l的正方形OABC在直角坐標(biāo)系中,A、B兩點(diǎn)在第一象限內(nèi),OA與x軸的夾角為30°,那么點(diǎn)B的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知邊長為5的等邊三角形ABC紙片,點(diǎn)E在AC邊上,點(diǎn)F在AB邊上,沿著EF折疊,使點(diǎn)A落在BC邊上的點(diǎn)D的位置,且ED⊥BC,則CE的長是( 。
A、10
3
-15
B、10-5
3
C、5
3
-5
D、20-10
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知邊長為2的正三角形ABC中,P0是BC邊的中點(diǎn),一束光線自P0發(fā)出射到AC上的點(diǎn)P1后,依次反射到AB、BC上的點(diǎn)P2和P3(反射角等于入射角),且1<BP3
3
2
,則P1C長的取值范圍是( 。
A、1<P1C<
7
6
B、
5
6
<P1C<1
C、
3
4
<P1C<
4
5
D、
7
6
<P1C<2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知邊長為2的正三角形ABC沿著直線l滾動(dòng).設(shè)△ABC滾動(dòng)240°時(shí),C點(diǎn)的位置為C′,△ABC滾動(dòng)480°時(shí),A點(diǎn)的位置為A′.請(qǐng)你利用三角函數(shù)中正切的兩角和公式:tan(α+β)=(tanα+tanβ)÷(1-tanα•tanβ),求出∠CAC′+∠CAA′的度數(shù).( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案