【題目】二次函數(shù)y=ax2+bx+ca≠0)的部分圖象如圖所示,圖象過點(diǎn)(-1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(14a+b=0;(29a+c3b;(38a+7b+2c0;(4)若點(diǎn)A-3y1)、點(diǎn)B-,y2)、點(diǎn)C,y3)在該函數(shù)圖象上,則y1y3y2;(5)若方程ax+1)(x-5=-3的兩根為x1x2,且x1x2,則x1-15x2.其中正確的結(jié)論有( 。

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

【答案】B

【解析】

1)正確.根據(jù)對(duì)稱軸公式計(jì)算即可.

2)錯(cuò)誤,利用x=﹣3時(shí),y0,即可判斷.

3)正確.由圖象可知拋物線經(jīng)過(﹣1,0)和(5,0),列出方程組求出a、b即可判斷.

4)錯(cuò)誤.利用函數(shù)圖象即可判斷.

5)正確.利用二次函數(shù)與二次不等式關(guān)系即可解決問題.

解:(1)正確.∵﹣2,

4a+b0.故正確.

2)錯(cuò)誤.∵x=﹣3時(shí),y0

9a3b+c0,

9a+c3b,故(2)錯(cuò)誤.

3)正確.由圖象可知拋物線經(jīng)過(﹣1,0)和(5,0),

解得,

8a+7b+2c8a28a10a=﹣30a

a0,

8a+7b+2c0,故(3)正確.

4)錯(cuò)誤,∵點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C,y3),

2,2﹣(﹣)=,

∴點(diǎn)C離對(duì)稱軸的距離近,

y3y2,

a0,﹣3<﹣2,

y1y2

y1y2y3,故(4)錯(cuò)誤.

5)正確.∵a0,

∴(x+1)(x5)=0,

即(x+1)(x5)>0

x<﹣1x5,故(5)正確.

∴正確的有三個(gè),

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一條直線把一個(gè)四邊形分成兩部分,這兩部分圖形的周長(zhǎng)相等,那么這條直線稱為這個(gè)四邊形的等分周長(zhǎng)線.在直角梯形ABCD中,ABCD,∠A90°DCAD,∠B是銳角,cotB,AB17.如果點(diǎn)E在梯形的邊上,CE是梯形ABCD等分周長(zhǎng)線,那么△BCE的周長(zhǎng)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示,AB是⊙O的直徑,點(diǎn)F是半圓上的一動(dòng)點(diǎn)(F不與A,B重合),弦AD平分∠BAF,過點(diǎn)DDEAF交射線AF于點(diǎn)AF

1)求證:DE與⊙O相切:

2)若AE8,AB10,求DE長(zhǎng);

3)若AB10,AF長(zhǎng)記為xEF長(zhǎng)記為y,求yx之間的函數(shù)關(guān)系式,并求出AFEF的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),作CEAB干點(diǎn)EBE=2OE,延長(zhǎng)AB至點(diǎn)D,使得BD=AB,P是弧AB(異于AB)上一個(gè)動(dòng)點(diǎn),連接ACPE

1)若AO=3,求AC的長(zhǎng)度;

2求證:CD是⊙O的切線;

3)點(diǎn)P在運(yùn)動(dòng)的過程中是否存在常數(shù)k,使得PE=k·PD,如果存在,求k的值,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)商店以2元的批發(fā)價(jià)進(jìn)了一批紀(jì)念品.經(jīng)調(diào)查發(fā)現(xiàn),每個(gè)定價(jià)3元,每天可以能賣出500件,而且定價(jià)每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀(jì)念品售價(jià)不能超過批發(fā)價(jià)的2.5倍.

1)當(dāng)每個(gè)紀(jì)念品定價(jià)為3.5元時(shí),商店每天能賣出________件;

2)如果商店要實(shí)現(xiàn)每天800元的銷售利潤(rùn),那該如何定價(jià)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)yk0)圖象交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,其中A點(diǎn)坐標(biāo)為(﹣2,3).

1)求一次函數(shù)和反比例函數(shù)解析式.

2)若將點(diǎn)C沿y軸向下平移4個(gè)單位長(zhǎng)度至點(diǎn)F,連接AF、BF,求△ABF的面積.

3)根據(jù)圖象,直接寫出不等式﹣x+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的二次函數(shù)yx2+2kx+k1,下列說法正確的是( 。

A.對(duì)任意實(shí)數(shù)k,函數(shù)圖象與x軸都沒有交點(diǎn)

B.對(duì)任意實(shí)數(shù)k,函數(shù)圖象沒有唯一的定點(diǎn)

C.對(duì)任意實(shí)數(shù)k,函數(shù)圖象的頂點(diǎn)在拋物線y=﹣x2x1上運(yùn)動(dòng)

D.對(duì)任意實(shí)數(shù)k,當(dāng)x≥﹣k1時(shí),函數(shù)y的值都隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知M、N兩點(diǎn)關(guān)于y軸對(duì)稱,且點(diǎn)M在反比例函數(shù)的圖象上,點(diǎn)N在一次函 數(shù)的圖象上,設(shè)點(diǎn)M的坐標(biāo)為(ab),則二次函數(shù)( )

A.有最小值,且最小值是B.有最大值,且最大值是

C.有最大值,且最大值是D.有最小值,且最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD的兩條對(duì)角線AC、BD互相平分.添加下列條件,一定能判定四邊形ABCD為菱形的是( 。

A.ABD=∠BDCB.ABD=∠BACC.ABD=∠CBDD.ABD=∠BCA

查看答案和解析>>

同步練習(xí)冊(cè)答案