如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面積等于   
【答案】分析:根據(jù)△ABE∽△ECF,可將AB與BE之間的關(guān)系式表示出來,在Rt△ABE中,根據(jù)勾股定理AB2+BE2=AC2,可將正方形ABCD的邊長AB求出,進(jìn)而可將正方形ABCD的面積求出.
解答:解:設(shè)正方形的邊長為x,BE的長為a
∵∠AEB+∠BAE=∠AEB+∠CEF=90°
∴∠BAE=∠CEF
∵∠B=∠C
∴△ABE∽△ECF
=,即=
解得x=4a①
在Rt△ABE中,AB2+BE2=AE2
∴x2+a2=42
將①代入②,可得:a=
∴正方形ABCD的面積為:x2=16a2=
點(diǎn)評:本題是一道根據(jù)三角形相似和勾股定理來求正方形的邊長結(jié)合求解的綜合題.隱含了整體的數(shù)學(xué)思想和正確運(yùn)算的能力.注意后面可以直接這樣x2+a2=42②,∴x2+(2=42,x2+x2=42,x2=16,x2=.無需算出算出x.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個(gè)三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線精英家教網(wǎng),交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點(diǎn)O,D,E,C為頂點(diǎn)的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點(diǎn)E是邊AC的中點(diǎn),連接DE,DE的延長線與邊BC相交于點(diǎn)F,AG∥BC,交DE于點(diǎn)G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點(diǎn)E、F在邊AB上,頂點(diǎn)N在邊AC上,在正三角形ABC及其內(nèi)部,以點(diǎn)A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點(diǎn)P、N分別在邊CB、CA上,求這兩個(gè)正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點(diǎn)O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習(xí)冊答案