7.函數(shù)y=$\frac{1}{\sqrt{x-1}}$中,自變量x的取值范圍應(yīng)是( 。
A.x>0B.x≠0C.x>1D.x≥1

分析 根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于或等于0,分母不等于0,可以求出x的范圍.

解答 解:根據(jù)題意得:x-1>0,
解得:x>1.
故選C.

點(diǎn)評(píng) 本題考查了函數(shù)自變量的范圍,一般從三個(gè)方面考慮:
(1)當(dāng)函數(shù)表達(dá)式是整式時(shí),自變量可取全體實(shí)數(shù);
(2)當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為0;
(3)當(dāng)函數(shù)表達(dá)式是二次根式時(shí),被開方數(shù)非負(fù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連結(jié)DE,若DE:AC=3:5,四邊形ABCD的面積為32,求四邊形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.64的立方根正確的是(  )
A.±4B.4C.±8D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,拋物線y=x2-2mx-3m2(m為常數(shù),m>0),與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,
(1)用m的代數(shù)式表示:點(diǎn)C坐標(biāo)為(0,-3m2),AB的長(zhǎng)度為4m;
(2)過點(diǎn)C作CD∥x軸,交拋物線于點(diǎn)D,將△ACD沿x軸翻折得到△AEM,延長(zhǎng)AM交拋物線于點(diǎn)N,
①求$\frac{AM}{AN}$的值;
②若AB=4,直線x=t交線段AN于點(diǎn)P,交拋物線于點(diǎn)Q,連接AQ、NQ,是否存在實(shí)數(shù)t,使△AQN的面積最大?如果存在,求t的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.解不等式或不等式祖,并把解集表示在數(shù)軸上.
(1)1+$\frac{x}{3}$>5-$\frac{x-2}{2}$       
(2)$\left\{{\begin{array}{l}{3x+2≤-4}\\{3-2x>2}\end{array}}\right.$
(3)$\left\{{\begin{array}{l}{2x+5<3(x+2)}\\{\frac{x-1}{2}-1≤\frac{x}{3}}\end{array}}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知3m=2,3n=4.
(1)求3m+n-1的值;
(2)求3×9m×27n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在Rt△ABC中,∠C=90°,∠A=30°,a=5,求∠B,b,c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.一次知識(shí)競(jìng)賽共有25道題,規(guī)定答對(duì)一道題得4分,答錯(cuò)或不達(dá)一道題得-1分,得80分或80分以上為優(yōu)勝獎(jiǎng),如果小麗想在這次競(jìng)賽中獲得優(yōu)勝獎(jiǎng),那么她至少要答對(duì)多少道題?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列說法正確的是( 。
A.經(jīng)過兩點(diǎn)可以畫無(wú)數(shù)條直線
B.兩條射線組成的圖形叫做角
C.正多邊形的各邊都相等,各角都相等
D.兩個(gè)銳角的和一定大于直角

查看答案和解析>>

同步練習(xí)冊(cè)答案