如圖,正方形ABCD中,AC是對角線,今有較大的直角三角板,一邊始終經(jīng)過點B,直角頂點P在射線AC上移動,另一邊交DC于Q.
(1)如圖1,當點Q在DC邊上時,猜想并寫出PB與PQ所滿足的數(shù)量關系;并加以證明;
(2)如圖2,當點Q落在DC的延長線上時,猜想并寫出PB與PQ滿足的數(shù)量關系,請證明你的猜想.

【答案】分析:(1)過P作PE⊥BC,PF⊥CD,證明Rt△PQF≌Rt△PBE,即可;
(2)證明思路同(1)
解答:(1)PB=PQ,
證明:過P作PE⊥BC,PF⊥CD,
∵P,C為正方形對角線AC上的點,
∴PC平分∠DCB,∠DCB=90°,
∴PF=PE,
∴四邊形PECF為正方形,
∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,
∴∠BPE=∠QPF,
∴Rt△PQF≌Rt△PBE,
∴PB=PQ;

(2)PB=PQ,
證明:過P作PE⊥BC,PF⊥CD,
∵P,C為正方形對角線AC上的點,
∴PC平分∠DCB,∠DCB=90°,
∴PF=PE,
∴四邊形PECF為正方形,
∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,
∴∠BPE=∠QPF,
∴Rt△PQF≌Rt△PBE,
∴PB=PQ.
點評:此題考查了正方形,角平分線的性質,以及全等三角形判定與性質.此題綜合性較強,注意數(shù)形結合思想.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案