【題目】自行車因其便捷環(huán)保深受人們喜愛,成為日常短途代步與健身運(yùn)動(dòng)首選.如圖1是某品牌自行車的實(shí)物圖,圖2是它的簡(jiǎn)化示意圖.經(jīng)測(cè)量,車輪的直徑為66cm,車座B到地面的距離BE90cm,中軸軸心C到地面的距離CF33cm,車架中立管BC的長(zhǎng)為60cm,后輪切地面L于點(diǎn)D.(參考數(shù)據(jù):sin720.95cos18°≈0.95,tan43.5°≈0.9 5

1)求∠ACB的大。ň_到1°)

2)如果希望車座B到地面的距離B'E′為96.8cm,車架中立管BC拉長(zhǎng)的長(zhǎng)度BB′應(yīng)是多少?(結(jié)果取整數(shù))

【答案】1)∠ACB72°;(2)車架中立管BC拉長(zhǎng)的長(zhǎng)度BB'應(yīng)是7cm

【解析】

1)根據(jù)矩形的判定可得:四邊形ADFC是矩形,從而求出BH,利用sinBCH,即可求出BCH;

2設(shè)B'E'AC交于點(diǎn)H',根據(jù)平行可證:B'H'BH,從而列出比例式即可求出B'C,從而求出BB′的長(zhǎng)度.

1)∵ADl,CFl,HEl

ADCFHE,

AD33cm,CF33cm,

ADCF,

∴四邊形ADFC是平行四邊形,

∵∠ADF90°,

∴四邊形ADFC是矩形,

HEAD33cm,

BE90cm,

BH57cm

RtHCB中,sinBCH0.95,

∴∠ACB72°.

2)如圖所示,B'E'96.8cm,設(shè)B'E'AC交于點(diǎn)H',則有B'H'BH,

∴△B'H'C∽△BHC,

,

B'C67cm

BB'B'CBC67607cm).

∴車架中立管BC拉長(zhǎng)的長(zhǎng)度BB'應(yīng)是7cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店將進(jìn)價(jià)為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價(jià)減少銷售量的辦法增加利潤(rùn),如果這種商品每件的銷售價(jià)每提高1元其銷售量就減少20件.

問應(yīng)將每件售價(jià)定為多少元時(shí),才能使每天利潤(rùn)為640元?

當(dāng)售價(jià)定為多少時(shí),獲得最大利潤(rùn);最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+cx軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(04),已知點(diǎn)Em0)是線段DO上的動(dòng)點(diǎn),過點(diǎn)EPEx軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H

1)求該拋物線的解析式;

2)當(dāng)點(diǎn)P在直線BC上方時(shí),請(qǐng)用含m的代數(shù)式表示PG的長(zhǎng)度;

3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時(shí)m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在水果銷售旺季,某水果店購(gòu)進(jìn)一優(yōu)質(zhì)水果,進(jìn)價(jià)為20/千克,售價(jià)不低于20/千克,且不超過32/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價(jià)x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.

銷售量y(千克)

34.8

32

29.6

28

售價(jià)x(元/千克)

22.6

24

25.2

26

1)某天這種水果的售價(jià)為23.5/千克,則當(dāng)天該水果的銷售量 千克.

2)如果某天銷售這種水果獲利150元,那么該天水果的售價(jià)為多少元?

3)當(dāng)售價(jià)定為多少元時(shí),當(dāng)天銷售這種水果獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=mx2-16mx+48m(m0)x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D是拋物線上的一個(gè)動(dòng)點(diǎn),且位于第四象限,連接OD、BD、AC、AD,延長(zhǎng)ADy軸于點(diǎn)E.

(1)若△OAC為等腰直角三角形,求m的值.

(2)若對(duì)任意m0C、E兩點(diǎn)總關(guān)于原點(diǎn)對(duì)稱,求點(diǎn)D的坐標(biāo)(用含m的式子表示).

(3)當(dāng)點(diǎn)D運(yùn)動(dòng)到某一位置時(shí),恰好使得∠ODB=OAD,且點(diǎn)D為線段AE的中點(diǎn),此時(shí)對(duì)于該拋物線上任意一點(diǎn)P(x0,y0)總有n≥4my0212y0-50成立,求實(shí)數(shù)n的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解方程:x22x30;

2)如圖,正方形ABCD中,點(diǎn)E,F,C分別在AB,BC,CD上,且∠EFG90°;求證:EBF∽△FCG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+ca≠0,a、b、c為常數(shù))上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:

x

……

3

2

1

0

1

2

……

y

……

4

4

m

0

……

則下列結(jié)論中:①拋物線的對(duì)稱軸為直線x=﹣1;②m;③當(dāng)﹣4x2時(shí),y0;④方程ax2+bx+c40的兩根分別是x1=﹣2,x20,其中正確的個(gè)數(shù)有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(2,1),B(1-2),C(3,-1)P(m,n)是△ABC的邊AB上一點(diǎn).

(1)畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于點(diǎn)O成中心對(duì)稱,并寫出點(diǎn)A、P的對(duì)應(yīng)點(diǎn)A1、P1的坐標(biāo).

(2)以原點(diǎn)O為位似中心,位似比為12,在y軸的左側(cè),畫出將△A1B1C1放大后的△A2B2C2,并分別寫出點(diǎn)A1、P1的對(duì)應(yīng)點(diǎn)A2P2的坐標(biāo).

(3)sinB2A2C2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,C0,4),Ax軸上一動(dòng)點(diǎn),連接AC,將ACA點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到AB,當(dāng)點(diǎn)Ax軸上運(yùn)動(dòng)時(shí),OB+BC的最小值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案