【題目】如圖,在Rt△ABC中,∠ACB=90°,CDAB于點(diǎn)D

(1)求證:AC2ADAB;

(2)求證:AC2+BC2AB2(即證明勾股定理);

(3)如果AC=4,BC=9,求ADDB的值;

(4)如果AD=4,DB=9,求ACBC的值.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3);(4).

【解析】

(1)欲證明AC2=ADAB,只要證明ACD∽△ABC;

(2)同理可證BC2=BDAB,由AC2=ADAB.推出AC2+BC2=ADAB+BDAB=AB2

(3)由BC2=BDAB,AC2=ADAB,推出=,即=,由此即可計(jì)算;

(4)用類(lèi)似(3)的方法計(jì)算即可.

(1)CDAB,ACB=90°,

∴∠ADC=ACB=90°,

∵∠A=A,

∴△ACD∽△ABC,

,

AC2=ADAB;

(2)同理可證BC2=BDAB,

AC2=ADAB.

AC2+BC2=ADAB+BDAB=AB2

AC2+BC2=AB2;

(3)BC2=BDAB,AC2=ADAB,

,

=;

(4)BC2=BDAB,AC2=ADAB,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)的圖象的一支在第一象限,A(﹣1,a)、B(﹣3,b)均在這個(gè)函數(shù)的圖象上.

(1)圖象的另一支位于什么象限?常數(shù)n的取值范圍是什么?

(2)試比較a、b的大。

(3)作AC⊥x軸于點(diǎn)C,若△AOC的面積為5,求這個(gè)反比例函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是放在地面上的一個(gè)長(zhǎng)方體盒子,其中AB=18cm,BC=12cm,BF=10cm,點(diǎn)M在棱AB上,且AM=6cm,點(diǎn)NFG的中點(diǎn),一只螞蟻要沿著長(zhǎng)方體盒子的表面從點(diǎn)M爬行到點(diǎn)N,它需要爬行的最短路程為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)工人拿一個(gè)米長(zhǎng)的梯子,底端放在距離墻根點(diǎn)米處,另一端點(diǎn)點(diǎn)靠墻.

1)求這個(gè)梯子的頂端距離地面的高度;

2)如圖,如果梯子的頂部下滑米,那么梯子的底部向外滑多少米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《函數(shù)的圖象與性質(zhì)》拓展學(xué)習(xí)片段展示:

【問(wèn)題】

如圖①,在平面直角坐標(biāo)系中,拋物線y=a(x-2)2-4經(jīng)過(guò)原點(diǎn)O,與x軸的另一個(gè)交點(diǎn)為A,則a= ,點(diǎn)A的坐標(biāo)為

【操作】

將圖①中的拋物線在x軸下方的部分沿x軸翻折到x軸上方,如圖②.直接寫(xiě)出翻折后的這部分拋物線對(duì)應(yīng)的函數(shù)解析式:

【探究】

在圖②中,翻折后的這部分圖象與原拋物線剩余部分的圖象組成了一個(gè)“W”形狀的新圖象,則新圖象對(duì)應(yīng)的函數(shù)yx的增大而增大時(shí),x的取值范圍是

【應(yīng)用】結(jié)合上面的操作與探究,繼續(xù)思考:

如圖③,若拋物線y=(x-h)2-4x軸交于A,B兩點(diǎn)(AB左),將拋物線在x軸下方的部分沿x軸翻折,同樣,也得到了一個(gè)“W”形狀的新圖象

1)求A、B兩點(diǎn)的坐標(biāo);(用含h的式子表示)

2)當(dāng)1x2時(shí),若新圖象的函數(shù)值yx的增大而增大,求h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小剛在實(shí)踐課上要做一個(gè)如圖1所示的折扇,折扇扇面的寬度AB是骨柄長(zhǎng)OA的折扇張開(kāi)的角度為120°小剛現(xiàn)要在如圖2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料長(zhǎng)為24cm,寬為21cm小剛經(jīng)過(guò)畫(huà)圖、計(jì)算,在矩形布料上裁剪下了最大的扇面,若不計(jì)裁剪和粘貼時(shí)的損耗,此時(shí)扇面的寬度AB為( )

A21cm B20 cm C19cm D18cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某市初中學(xué)生每天進(jìn)行體育鍛煉的時(shí)間,隨機(jī)抽樣調(diào)查了100名初中學(xué)生,根據(jù)調(diào)查結(jié)果得到如圖所示的統(tǒng)計(jì)圖表.

請(qǐng)根據(jù)圖表信息解答下列問(wèn)題:

(1)在統(tǒng)計(jì)表中,m=_______,n=____,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)扇形統(tǒng)計(jì)圖中“C組”所對(duì)應(yīng)的圓心角的度數(shù)是_______;

(3)據(jù)了解該市大約有3萬(wàn)名初中學(xué)生,請(qǐng)估計(jì)該市初中學(xué)生每天進(jìn)行體育鍛煉時(shí)間在1小時(shí)以上的人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖的三張形狀相同、大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)為1,請(qǐng)依次在3個(gè)圖中畫(huà)出滿(mǎn)足要求的三角形,要求所畫(huà)的三角形的各頂點(diǎn)必須與方格紙中小正方形的頂點(diǎn)重合.

1)畫(huà)一個(gè)底邊長(zhǎng)為4,面積為10的等腰三角形;

2)畫(huà)一個(gè)面積為10的等腰直角三角形;

3)畫(huà)一個(gè)一邊長(zhǎng)為2且面積為10的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中直線 x軸于A點(diǎn),y軸于B點(diǎn),點(diǎn)C是線段AB的中點(diǎn)連接OC,然后將直線OC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)30°x軸于點(diǎn)D再過(guò)D點(diǎn)作直線DC1OC,AB與點(diǎn)C1,然后過(guò)C1點(diǎn)繼續(xù)作直線D1C1DC,x軸于點(diǎn)D1,并不斷重復(fù)以上步驟,OCD的面積為S1,DC1D1的面積為S2依此類(lèi)推,后面的三角形面積分別是S3,S4,那么S1=_____,S=S1+S2+S3+…+Sn當(dāng)n無(wú)限大時(shí),S的值無(wú)限接近于_____

查看答案和解析>>

同步練習(xí)冊(cè)答案