【題目】平面直角坐標(biāo)系中,三角形ABC的頂點都在網(wǎng)格點上。

(1)平移三角形ABC,使點C與坐標(biāo)原點O是對應(yīng)點,請畫出平移后的三角形A′B′C′;

(2)寫出A、B兩點的對應(yīng)點A′、B′的坐標(biāo);

(3)求出三角形ABC的面積。

【答案】(1)作圖見解析;(2A′1,-3)、B′3,1);(35

【解析】試題分析:(1)找出點A、B的對應(yīng)點A′、B′的位置,然后順次連接即可得解;

2)根據(jù)平面直角坐標(biāo)系寫出即可;

3)先求出△ABC所在的矩形的面積,然后減去△ABC四周的三角形的面積即可.

試題解析:(1)如圖所示,△A′B′C′即為所求作的三角形;

2)點A′B′的坐標(biāo)分別為A′1,-3)、B′3,1);

3SABC=3×4-×3×1-×2×4-×1×3,

=12--4-,

=12-7,

=5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A. 有理數(shù)分為正數(shù)和負(fù)數(shù) B. 符號不同的兩個數(shù)互為相反數(shù)

C. 所有的有理數(shù)都能用數(shù)軸上的點表示 D. 兩數(shù)相加,和一定大于任何一個數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)a在數(shù)軸上表示的點在原點左側(cè),距離原點3個單位長,b在數(shù)軸上表示的點在原點右側(cè),距離原點2個單位長,cd互為倒數(shù),mn互為相反數(shù),y為最大的負(fù)整數(shù),求(y+b2+ma-cd-nb2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點O,點D、E分別在邊AC、BC上,且AD=CE,連結(jié)DE交CO于點P,給出以下結(jié)論:

①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為;④,其中所有正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡:

(1)5x﹣4y﹣3x﹣y;

(2)3(m2﹣2m﹣1)﹣2(2m2﹣3m)﹣3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,點C是直徑AB延長線上一點,過點C作⊙O的切線,切點為D,連結(jié)BD

(1)求證:∠A=∠BDC;

(2)若CM平分∠ACD,且分別交AD、BD于點M、N,當(dāng)DM=1時,求MN的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知yx 的函數(shù),自變量x的取值范圍是x >0,下表是yx 的幾組對應(yīng)值.

x

···

1

2

3

5

7

9

···

y

···

1.98

3.95

2.63

1.58

1.13

0.88

···

小騰根據(jù)學(xué)習(xí)一次函數(shù)的經(jīng)驗,利用上述表格所反映出的yx之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.

下面是小騰的探究過程,請補充完整:

(1)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點.根據(jù)描出的點,畫出該函數(shù)的圖象;

(2)根據(jù)畫出的函數(shù)圖象,寫出:

x=4對應(yīng)的函數(shù)值y約為________;

該函數(shù)的一條性質(zhì):__________________.

查看答案和解析>>

同步練習(xí)冊答案