【題目】已知方程x+(c是常數(shù),c≠0)的解是c或,那么方程x+ (a是常數(shù),且a≠0)的解是_____或_____.
【答案】
【解析】分析:觀察方程x+(c是常數(shù),c≠0)的特點,發(fā)現(xiàn)此方程的左邊是未
知數(shù)與其倒數(shù)的和,方程右邊的形式與左邊的形式完全相同,只是把其中的未知數(shù)換成了某
個常數(shù),那么這樣的方程可以直接求解.本題需要將方程x+變形,使等號
左邊未知數(shù)的系數(shù)變得相同,又等號右邊的代數(shù)式可變?yōu)?/span>.為此,方程的兩邊
同乘2,整理后,即可寫成方程 x+的形式,從而求出原方程的解.
詳解:原方程變形為=++,
方程的兩邊同乘2,得2x+=a+3+,
兩邊同時減去3,得2x﹣3+=a+,
∴2x﹣3=a或2x﹣3=,
∴x=或x=.
故答案為,.
科目:初中數(shù)學 來源: 題型:
【題目】瑞士著名數(shù)學家歐拉發(fā)現(xiàn):簡單多面體的頂點數(shù)V、面數(shù)F及棱數(shù)E之間滿足一種有趣的關系:V+F﹣E=2,這個關系式被稱為歐拉公式.比如:正二十面體(如右圖),是由20個等邊三角形所組成的正多面體,已知每個頂點處有5條棱,則可以通過歐拉公式算出正二十面體的頂點為_____個.那么一個多面體的每個面都是五邊形,每個頂點引出的棱都有3條,它是一個_____面體.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,正確的個數(shù)是( 。
①若三條線段的比為1:1:,則它們組成一個等腰直角三角形
②當四邊形對角線垂直時連四邊形各邊中點得到一個矩形
③對角線互相垂直的四邊形是菱形;
④一條對角線平分一組對角線的平行四邊形為菱形;
⑤過矩形對角線交點的一條直線與矩形的一組對邊相交,必分矩形為面積相等的兩部分.
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A,B兩地相距80km,甲、乙兩人騎車分別從A,B兩地同時相向而行,他們都保持勻速行駛.如圖,l1,l2分別表示甲、乙兩人離B地的距離y(km)與騎車時間x(h)的函數(shù)關系.根據(jù)圖象得出的下列結論,正確的個數(shù)是( 。
①甲騎車速度為30km/小時,乙的速度為20km/小時;
②l1的函數(shù)表達式為y=80﹣30x;
③l2的函數(shù)表達式為y=20x;
④小時后兩人相遇.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】典典同學學完統(tǒng)計知識后,隨機調(diào)查了她家所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形和條形統(tǒng)計圖:
請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:
(1)扇形統(tǒng)計圖中a= ,b= ;并補全條形統(tǒng)計圖;
(2)若該轄區(qū)共有居民3500人,請估計年齡在0~14歲的居民的人數(shù).
(3)一天,典典知道了轄區(qū)內(nèi)60歲以上的部分老人參加了市級門球比賽,比賽的老人們分成甲、乙兩組,典典很想知道甲乙兩組的比賽結果,王大爺告訴說,甲組與乙組的得分和為110,甲組得分不低于乙組得分的1.5倍,甲組得分最少為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于點E.
(1)求證:DE是⊙O的切線.
(2)若∠B=30°,AB=8,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直與x軸,垂足為點B,反比例函數(shù)(x>0)的圖象經(jīng)過AO的中點C,且與AB相交于點D,OB=4,AD=3.
(1)求反比例函數(shù)的解析式;
(2)求cos∠OAB的值;
(3)求經(jīng)過C、D兩點的一次函數(shù)解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com