A. | 4cm2 | B. | 6cm2 | C. | 8cm2 | D. | 9cm2 |
分析 取CG的中點(diǎn)H,連接EH,根據(jù)三角形的中位線定理可得EH∥AD,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠GDF=∠HEF,然后利用“角邊角”證明△DFG和△EFH全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得FG=FH,全等三角形的面積相等可得S△EFH=S△DGF,再求出FC=3FH,再根據(jù)等高的三角形的面積比等于底邊的比求出兩三角形的面積的比,從而得解.
解答 解:如圖,取CG的中點(diǎn)H,連接EH,
∵E是AC的中點(diǎn),
∴EH是△ACG的中位線,
∴EH∥AD,
∴∠GDF=∠HEF,
∵F是DE的中點(diǎn),
∴DF=EF,
在△DFG和△EFH中,$\left\{\begin{array}{l}{∠GDF=∠HEF}&{\;}\\{DF=EF}&{\;}\\{∠DFG=∠EFH}&{\;}\end{array}\right.$,
∴△DFG≌△EFH(ASA),
∴FG=FH,S△EFH=S△DGF,
又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,
∴S△CEF=3S△EFH,
∴S△CEF=3S△DGF,
∴S△DGF=$\frac{1}{3}$×12=4(cm2).
故選:A.
點(diǎn)評(píng) 本題考查了三角形的中位線定理,全等三角形的判定與性質(zhì),作輔助線,利用三角形的中位線進(jìn)行解題是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
類(lèi)型 價(jià)格 | A型 | B型 |
進(jìn)價(jià)(元/件) | 60 | 100 |
標(biāo)價(jià)(元/件) | 100 | 150 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com