精英家教網 > 初中數學 > 題目詳情
已知:如圖,在以點O為圓心的兩個同心圓中,大圓的半徑OA與小圓相交于點B,AC與小圓相切于點C,OC的延長線與大圓相交于點D,AC與BD相交于點E.
求證:(1)BD是小圓的切線;
(2)CE:AE=OC:OD.
證明:(1)∵AC與小圓O相切于點C,
∴∠ACO=90°;
∵OD=OA,OB=OC,∠O=∠O,
∴△DOB≌△AOC,
∴∠DBO=∠ACO=90°,
∵OB是小圓的半徑,
∴BD是小圓的切線;

(2)∵△AOC≌△DOB,
∴∠A=∠D;
又∵∠EBA=∠DBO=90°,
∴△ABE△DBO,∴BE:AE=OB:OD;
∵EB、EC與小圓分別相切于B、C,
∴CE=BE;
又∵OC=OB,
∴CE:AE=OC:OD.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:單選題

如圖,AB是半圓的直徑,CD是這個半圓的切線,C是切點,且∠ACD=30°,下列四個結論中不正確的是( 。
A.AB=2ACB.AB2=AC2+BC2
C.BC=
3
AC
D.AB=
2
BC

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:正方形ABCD的邊長為4,⊙O交正方形ABCD的對角線AC所在直線于點T,連接TO交⊙O于點S.

(1)如圖1,當⊙O經過A、D兩點且圓心O在正方形ABCD內部時,連接DT、DS.
①試判斷線段DT、DS的數量關系和位置關系;
②求AS+AT的值;
(2)如圖2,當⊙O經過A、D兩點且圓心O在正方形ABCD外部時,連接DT、DS.求AS-AT的值;
(3)如圖3,延長DA到點E,使AE=AD,當⊙O經過A、E兩點時,連接ET、ES.根據(1)、(2)計算,通過觀察、分析,對線段
AS、AT的數量關系提出問題并解答.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,割線ABC與⊙O相交于B、C兩點,D為⊙O上一點,E為弧BC的中點,OE交BC于F,DE交AC于G,∠ADG=∠AGD,AB=2,AD=4,EG=2.
求證:∠A=60°.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,C為AB延長線上一點,CD與⊙O相切,切點為E,AD⊥CD于點D,交⊙O于點F,若⊙O的半徑為2,設BC=x,DF=y,則y關于x的函數解析式為y=______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,在Rt△ABC中,∠ABC=90°,以AB上的點O為圓心,OB的長為半徑的圓與AB交于點E,與AC切于點D
(1)求證:BC=CD;
(2)求證:∠ADE=∠ABD.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,AC=3
3
,DC=3,O是邊AB上一動點(O與點A和B不重合),以OA為半徑的⊙O與AB相交于點E.
(1)若⊙O經過點D,求證:BC與⊙O相切;
(2)試求在(1)中⊙O的半徑OA的長度;
(3)請分別寫出⊙O與BC所在直線相交和相離時OA的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,弦CD與AB相交于E,DE=EC,過點B的切線與AD的延長線交于F,過E作EG⊥BC于G,延長GE交AD于H.
(1)求證:AH=HD;
(2)若cos∠C=
4
5
,DF=9,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知AB與⊙O相切于點C,OA=OB,OA、OB與⊙O分別交于點D、E.
(I)如圖①,若⊙O的直徑為8,AB=10,求OA的長(結果保留根號);
(II)如圖②,連接CD、CE,若四邊形ODCE為菱形,求
OD
OA
的值.

查看答案和解析>>

同步練習冊答案