【題目】如圖,在ABC中,AB=AC=2,B=40°,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作ADE=40°,DE交線段AC于E.

(1)當(dāng)BDA=115°時(shí),BAD= °;點(diǎn)D從B向C運(yùn)動(dòng)時(shí),BDA逐漸變 (填“大”或“小”);

(2)當(dāng)DC等于多少時(shí),ABD≌△DCE,請(qǐng)說(shuō)明理由;

(3)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,ADE的形狀也在改變,判斷當(dāng)BDA等于多少度時(shí),ADE是等腰三角形.

【答案】(1)25°;。(2)當(dāng)DC等于2時(shí),ABD≌△DCE;(3)當(dāng)ADB=110°或80°時(shí),ADE是等腰三角形.

【解析】

試題分析:(1)根據(jù)三角形內(nèi)角和定理,將已知數(shù)值代入即可求出BAD,根據(jù)點(diǎn)D的運(yùn)動(dòng)方向可判定BDA的變化情況.

(2)假設(shè)ABD≌△DCE,利用全等三角形的對(duì)應(yīng)邊相等得出AB=DC=2,即可求得答案.

(3)假設(shè)ADE是等腰三角形,分為三種情況:①當(dāng)AD=AE時(shí),ADE=AED=40°,根據(jù)AEDC,得出此時(shí)不符合;②當(dāng)DA=DE時(shí),求出DAE=DEA=70°,求出BAC,根據(jù)三角形的內(nèi)角和定理求出BAD,根據(jù)三角形的內(nèi)角和定理求出BDA即可;③當(dāng)EA=ED時(shí),求出DAC,求出BAD,根據(jù)三角形的內(nèi)角和定理求出ADB

解:(1)BAD=180°ABDBDA=180°﹣40°﹣115°=25°;

從圖中可以得知,點(diǎn)D從B向C運(yùn)動(dòng)時(shí),BDA逐漸變;

故答案為:25°;。

(2)當(dāng)ABD≌△DCE時(shí).

DC=AB,

AB=2

DC=2,

當(dāng)DC等于2時(shí),ABD≌△DCE

(3)AB=AC,

∴∠B=C=40°

①當(dāng)AD=AE時(shí),ADE=AED=40°,

∵∠AEDC

此時(shí)不符合;

②當(dāng)DA=DE時(shí),即DAE=DEA=(180°﹣40°)=70°,

∵∠BAC=180°﹣40°﹣40°=100°,

∴∠BAD=100°﹣70°=30°;

∴∠BDA=180°﹣30°﹣40°=110°;

③當(dāng)EA=ED時(shí),ADE=DAE=40°,

∴∠BAD=100°﹣40°=60°,

∴∠BDA=180°﹣60°﹣40°=80°;

當(dāng)ADB=110°或80°時(shí),ADE是等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)沙市馬王堆蔬菜批發(fā)市場(chǎng)某批發(fā)商原計(jì)劃以每千克10元的單價(jià)對(duì)外批發(fā)銷(xiāo)售某種蔬菜為了加快銷(xiāo)售,該批發(fā)商對(duì)價(jià)格進(jìn)行兩次下調(diào)后,售價(jià)降為每千克元.

求平均每次下調(diào)的百分率;

某大型超市準(zhǔn)備到該批發(fā)商處購(gòu)買(mǎi)2噸該蔬菜,因數(shù)量較多,該批發(fā)商決定再給予兩種優(yōu)惠方案以供選擇方案一:打八折銷(xiāo)售;方案二:不打折,每噸優(yōu)惠現(xiàn)金1000試問(wèn)超市采購(gòu)員選擇哪種方案更優(yōu)惠?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知△ABC和△DCE均是等邊三角形,點(diǎn)B. C. E在同一條直線上,AE與BD交于點(diǎn)O,AE與CD交于點(diǎn)G,AC與BD交于點(diǎn)F,連接OC、FG,則下列結(jié)論中:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,正確的是( )個(gè)

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠C=90°,DAC的中點(diǎn),EAB的中點(diǎn),作EFBCF,延長(zhǎng)BCG,使CG=BF,連接CE、DEDG


1)如圖1,求證:四邊形CEDG是平行四邊形;
2)如圖2,連接EGAC于點(diǎn)H,若EGAB,請(qǐng)直接寫(xiě)出圖2中所有長(zhǎng)度等于GH的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果三角形有一邊上的中線恰好等于這邊的長(zhǎng),那么我們稱(chēng)這個(gè)三角形為美麗三角形

(1)如圖△ABC中,AB=AC=BC=2,求證:△ABC美麗三角形

(2)RtABC中,∠C=90°,AC=2,若△ABC美麗三角形,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線BC1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

1)求BC邊的長(zhǎng);

2)當(dāng)△ABP為直角三角形時(shí),求t的值;

3)當(dāng)△ABP為等腰三角形時(shí),求t的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C=90°,將ACE沿著AE折疊以后C點(diǎn)正好落在AB邊上的點(diǎn)D處.

(1)當(dāng)∠B=28°時(shí),求∠AEC的度數(shù);

(2)當(dāng)AC=6,AB=10時(shí),

①求線段BC的長(zhǎng);

②求線段DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ADBC,MCD中點(diǎn),AM平分∠DAB,ADBCAB.求證:BM平分∠ABC

小淇證明過(guò)程如下:

延長(zhǎng)BC至點(diǎn)F,使得CFAD,連接MF

ADBC, D=∠MCF

MCD中點(diǎn),∴ DMCM

在△ADM和△FCM中,

ADM≌△FCMSAS). AMFM

BFBCCFBCADAB,∴ ABF是等腰三角形.

BM平分∠ABC(等腰三角形底邊上的中線與頂角的角平分重合).

1)請(qǐng)你簡(jiǎn)要敘述小淇證明方法的錯(cuò)誤之處;

2)若AB5,AM3,求四邊形ABCD面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】201271日起,重慶實(shí)施階梯電價(jià),市民家庭每月用電量使用情況不同,按照用電量區(qū)間價(jià)格繳納用電費(fèi)用.其收費(fèi)標(biāo)準(zhǔn)如下表:階梯電價(jià)分三個(gè)檔次.設(shè)某用戶每月用電量為x度,應(yīng)交電費(fèi)為y元.

檔次

用電量

每度電價(jià)格

第一檔

不超過(guò)200度的部分

0.52

第二檔

超過(guò)200度不超過(guò)400度的部分

0.57

第三檔

超過(guò)400度的部分

0.82

1)直接寫(xiě)出yx的關(guān)系式;

2)小明家6、7月份共用電800度,應(yīng)交電費(fèi)471元,已知7月份的用電量比6月份的用電量大,求小明家67月份各用電多少度?

查看答案和解析>>

同步練習(xí)冊(cè)答案