探究與發(fā)現(xiàn):
如圖1所示的圖形,像我們常見的學(xué)習(xí)用品--圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個(gè)簡(jiǎn)單的圖形中,到底隱藏了哪些數(shù)學(xué)知識(shí)呢?下面就請(qǐng)你發(fā)揮你的聰明才智,解決以下問題:
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請(qǐng)你直接利用以上結(jié)論,解決以下三個(gè)問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,若∠A=50°,則∠ABX+∠ACX=
 
°;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度數(shù).
精英家教網(wǎng)
分析:(1)根據(jù)題意觀察圖形連接AD并延長(zhǎng)至點(diǎn)F,由外角定理可知,一個(gè)三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的和,則容易得到∠BDC=∠BDF+∠CDF;
(2)①由(1)的結(jié)論可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值.
②結(jié)合圖形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的結(jié)論可知∠DCE=
1
2
(∠ADB+∠AEB)+∠A,易得答案.
③由(2)的方法,進(jìn)而可得答案.
解答:精英家教網(wǎng)解:(1)連接AD并延長(zhǎng)至點(diǎn)F,
由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;
且∠BDC=∠BDF+∠CDF及∠BAC=∠BAD+∠CAD;
相加可得∠BDC=∠A+∠B+∠C;

(2)①由(1)的結(jié)論易得:∠ABX+∠ACX+∠A=∠BXC,
又因?yàn)椤螦=50°,∠BXC=90°,
所以∠ABX+∠ACX=90°-50°=40°;

②由(1)的結(jié)論易得∠DBE=∠A+∠ADB+∠AEB,易得∠ADB+∠AEB=80°;
而∠DCE=
1
2
(∠ADB+∠AEB)+∠A,
代入∠DAE=50°,∠DBE=130°,易得∠DCE=90°;

③∠BG1C═
1
10
(∠ABD+∠ACD)+∠A,
∵∠BG1C=77°,
∴設(shè)∠A為x°,
∵∠ABD+∠ACD=140°-x°
1
10
(140-x)+x=77,
14-
1
10
x+x=77,
x=70
∴∠A為70°.
點(diǎn)評(píng):本題考查三角形外角的性質(zhì)及三角形的內(nèi)角和定理,解答的關(guān)鍵是溝通外角和內(nèi)角的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

探究與發(fā)現(xiàn):

如圖(1)所示的圖形,像我們常見的學(xué)習(xí)用品——圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個(gè)簡(jiǎn)單的圖形中,到底隱藏了哪些數(shù)學(xué)知識(shí)呢?下面就請(qǐng)你發(fā)揮你的聰明才智,解決以下問題:

(1)觀察“規(guī)形圖”(圖1),試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;

(2)請(qǐng)你直接利用以上結(jié)論,解決以下三個(gè)問題:

①如圖(2),把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,若∠A=50°,則∠ABX+∠ACX=__________°;

②如圖(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,則∠DCE= __________°; 

③如圖(4),∠ABD、∠ACD的10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=140°,∠BG5C=105°,求∠A的度數(shù).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探究與發(fā)現(xiàn):
如圖(1)所示的圖形,像我們常見的學(xué)習(xí)用品——圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個(gè)簡(jiǎn)單的圖形中,到底隱藏了哪些數(shù)學(xué)知識(shí)呢?下面就請(qǐng)你發(fā)揮你的聰明才智,解決以下問題:

(1)觀察“規(guī)形圖”(圖1),試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請(qǐng)你直接利用以上結(jié)論,解決以下三個(gè)問題:
①如圖(2),把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,若∠A=50°,則∠ABX+∠ACX =__________°;
②如圖(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,則∠DCE= __________°; 

③如圖(4),∠ABD、∠ACD的10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=140°,∠BG5C=105°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇南京市第三初級(jí)中學(xué)七年級(jí)下學(xué)期期中考試數(shù)學(xué)卷(帶解析) 題型:解答題

探究與發(fā)現(xiàn):
如圖(1)所示的圖形,像我們常見的學(xué)習(xí)用品——圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個(gè)簡(jiǎn)單的圖形中,到底隱藏了哪些數(shù)學(xué)知識(shí)呢?下面就請(qǐng)你發(fā)揮你的聰明才智,解決以下問題:

(1)觀察“規(guī)形圖”(圖1),試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請(qǐng)你直接利用以上結(jié)論,解決以下三個(gè)問題:
①如圖(2),把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,若∠A=50°,則∠ABX+∠ACX =__________°;
②如圖(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,則∠DCE= __________°; 

③如圖(4),∠ABD、∠ACD的10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=140°,∠BG5C=105°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇南京市七年級(jí)下學(xué)期期中考試數(shù)學(xué)卷(解析版) 題型:解答題

探究與發(fā)現(xiàn):

如圖(1)所示的圖形,像我們常見的學(xué)習(xí)用品——圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個(gè)簡(jiǎn)單的圖形中,到底隱藏了哪些數(shù)學(xué)知識(shí)呢?下面就請(qǐng)你發(fā)揮你的聰明才智,解決以下問題:

(1)觀察“規(guī)形圖”(圖1),試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;

(2)請(qǐng)你直接利用以上結(jié)論,解決以下三個(gè)問題:

①如圖(2),把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,若∠A=50°,則∠ABX+∠ACX =__________°;

②如圖(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,則∠DCE= __________°; 

③如圖(4),∠ABD、∠ACD的10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=140°,∠BG5C=105°,求∠A的度數(shù).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案