證明:(1)∵△ABE是等邊三角形,
∴AB=BE,∠ABE=60°,
由旋轉(zhuǎn)知,MB=NB,∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN,
即∠MBA=∠NBE,
在△AMB和△ENB中,
,
∴△AMB≌△ENB(SAS);
(2)①根據(jù)“兩點(diǎn)之間線段最短”,連接AC,當(dāng)點(diǎn)M位于BD與AC的交點(diǎn)處時(shí),AM+CM最。
②連接CE,當(dāng)點(diǎn)M位于BD、CE的交點(diǎn)處時(shí),AM+BM+CM最。
理由如下:如圖,連接CE交BD于點(diǎn)M,連接AM,在EM上取一點(diǎn)N,使∠MBN=60°,
在△ABD和△CBD中,
,
∴△ABD≌△CBD(SSS),
∴∠1=∠2,
∵∠MBN=∠ABE=60°,
∴∠MBN-∠A∠=∠ABE-∠ABN,
即∠1=∠3,
∴∠2=∠3,
∵AB=BC,AB=BE,
∴BC=BB,
∴∠4=∠5,
在△EBN和△CBM中,
,
∴△EBN≌△CBM(ASA),
∴BN=BM,
∴此時(shí)BN由BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到,
由(1)知:△AMB≌△ENB,
∴AM=EN,
∵∠MBN=60°,BM=BN,
∴△BMN是等邊三角形,
∴BM=MN,
∴AM+BM+CM=EN+MN+CM,
∴根據(jù)“兩點(diǎn)之間線段最短”可知當(dāng)點(diǎn)M位于BD、CE的交點(diǎn)處時(shí),AM+BM+CM的值最小,即等于EC的長(zhǎng).
分析:(1)根據(jù)等邊三角形的性質(zhì)可得AB=BE,∠ABE=60°,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,∠MBN=60°,然后求出∠MBA=∠NBE,再利用“邊角邊”證明△AMB和△ENB全等即可;
(2)①根據(jù)兩點(diǎn)之間線段最短解答;
②連接CE,當(dāng)點(diǎn)M位于BD、CE的交點(diǎn)處時(shí),AM+BM+CM最。趫D中標(biāo)注角,根據(jù)“邊邊邊”證明△ABD和△CBD全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠1=∠2,再求出∠1=∠3,從而得到∠2=∠3,根據(jù)旋轉(zhuǎn)的性質(zhì)與等邊三角形的三條邊都相等求出BC=BE,根據(jù)等邊對(duì)等角的性質(zhì)求出∠4=∠5,然后利用“角邊角”證明△EBN和△CBM全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BN=BM,根據(jù)(1)的結(jié)論可得AM=EN,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出△BMN是等邊三角形,根據(jù)等邊三角形的性質(zhì)求出BM=MN,從而求出AM+BM+CM=EN+MN+CM,最后根據(jù)兩點(diǎn)之間線段最短解答.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),以及兩點(diǎn)之間線段最短的性質(zhì),先判斷出點(diǎn)M所處的位置是解題的關(guān)鍵.