運用平方差公式計算.
①(3a+b)(3a-b)
②9(-x+2y)(-x-2y)
③(
1
2
a-b)(-
1
2
a-b)
④59.8×60.2
⑤(2x-3y)(3y+2x)-(4y-3x)(3x+4y)
分析:①②③利用平方差公式進(jìn)行計算即可得解;
④把59.8×60.2寫成(60-0.2)×(60+0.2),然后利用平方差公式進(jìn)行計算即可得解;
⑤利用平方差公式進(jìn)行計算即可得解,然后合并同類項即可.
解答:①解:(3a+b)(3a-b),
=(3a)2-b2,
=9a2-b2;

②解:(-x+2y)(-x-2y),
=(-x)2-(2y)2
=x2-4y2;

③解:(
1
2
a-b)(-
1
2
a-b),
=(-b)2-(
1
2
a)2,
=b2-
1
4
a2;

④解:59.8×60.2,
=(60-0.2)×(60+0.2),
=602-0.22
=3600-0.04,
=3599.96;

⑤解:(2x-3y)(3y+2x)-(4y-3x)(3x+4y),
=(2x)2-(3y)2-(4y)2+(3x)2,
=4x2-9y2-16y2+9x2,
=13x2-25y2
點評:本題考查了平方差公式,運用平方差公式計算時,關(guān)鍵要找相同項和相反項,其結(jié)果是相同項的平方減去相反項的平方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料:
某同學(xué)在計算3(4+1)(42+1)時,把3寫成4-1后,發(fā)現(xiàn)可以連續(xù)運用平方差公式計算:3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受啟發(fā),后來在求(2+1)(22+1)(24+1)(28+1)…(22048+1)的值時,又改造此法,將乘積式前面乘以1,且把1寫為2-1得(2+1)(22+1)(24+1)(28+1)…(22048+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22048+1)=(22-1)(22+1)(24+1)(28+1)…(22048+1)=(24-1)(24+1)(28+1)…(22048+1)=(22048-1)(22048+1)=24096-1
回答下列問題:
(1)請借鑒該同學(xué)的經(jīng)驗,計算:(1+
1
2
)(1+
1
22
)(1+
1
24
)(1+
1
28
)+
1
215
;
(2)借用上面的方法,再逆用平方差公式計算:(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
102
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、下列各式中,能夠運用平方差公式計算的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列運用平方差公式計算,錯誤的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

運用平方差公式計算20082-2009×2007.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列各式中,不能運用平方差公式計算的是( 。

查看答案和解析>>

同步練習(xí)冊答案