【題目】如圖所示,某工程隊準備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為31°,塔底B的仰角為26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,圖中的點O、B、C、A、P在同一平面內(nèi).
求:
(1)P到OC的距離.
(2)山坡的坡度tanα.
(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)
【答案】(1)P到OC的距離為400米;(2)tanα=0.4
【解析】試題分析:(1)過點P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形,先解Rt△PBD,得出BD=PDtan26.6°;解Rt△CPD,得出CD=PDtan31°;再根據(jù)CD﹣BD=BC,列出方程,求出PD=400即可求得點P到OC的距離;
(2)利用求得的線段PD的長求出PE=40,AE=100,然后在△APE中利用三角函數(shù)的定義即可求解.
試題解析:(1)如圖,過點P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形.
在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,
∴BD=PDtan∠BPD=PDtan26.6°;
在Rt△CPD中,∵∠CDP=90°,∠CPD=31°,
∴CD=PDtan∠CPD=PDtan31°;
∵CD﹣BD=BC,
∴PDtan31°﹣PDtan26.6°=40,
∴0.60PD﹣0.50PD=40,
解得PD=400(米),
∴P到OC的距離為400米;
(2)在Rt△PBD中,BD=PDtan26.6°≈400×0.50=200(米),
∵OB=240米,
∴PE=OD=OB﹣BD=40米,
∵OE=PD=400米,
∴AE=OE﹣OA=400﹣300=100(米),
∴tanα= =0.4,
∴坡度為0.4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC三個內(nèi)角的平分線交于點O,點D在CA的延長線上,且DC=BC,AD=AO,若∠BAC=80°,則∠BCA的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,∠C<90°,若∠B滿足條件:______________,則△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)有甲、乙兩個不透明的盒子,甲盒子中裝有3張卡片,卡片上分別寫著3、7、9;乙盒子中裝有4張卡片,卡片上分別寫著2、4、6、8;盒子外有一張寫著5的卡片.所有卡片的形狀、大小都完全相同.現(xiàn)隨機從甲、乙兩個盒子中各取出一張卡片,與盒子外的卡片放在一起,用卡片上標明的數(shù)量分別作為一條線段的長度.
(1)請用樹狀圖或列表的方法求這三條線段能組成三角形的概率;
(2)求這三條線段能組成直角三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,D在AC上,E在BA的延長線上,BD=CE,BD的延長線交CE于點F。求證:BF⊥CE。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為,,將△ABC平移得到△DEF其中點A的對應(yīng)點D的坐標為.
將△ABC先向左平移_____個單位長度,再向____平移4個單位長度得到△DEF.
請畫出△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上每相鄰兩點間的距離為一個單位長度.點A、B、C、D對應(yīng)的數(shù)分別是a、b、c、d,且d﹣3a=20.
(1)a= ,b= ,c= .
(2)點A以2個單位/秒的速度沿著數(shù)軸的正方向運動,1秒后點B以4個單位/秒的速度也沿著數(shù)軸的正方向運動.當(dāng)點B到達D點處立刻返回,返回時,點A與點B在數(shù)軸的某點處相遇,求這個點對應(yīng)的數(shù).
(3)如果A、C兩點分別以2個單位/秒和3個單位/秒的速度同時向數(shù)軸的負方向運動,同時,點B從圖上的位置出發(fā)向數(shù)軸的正方向以1個單位/秒的速度運動,當(dāng)滿足AB+AC=AD時,點A對應(yīng)的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,A(m,0),B(n,0),C(﹣1,2),且滿足式|m+2|+(m+n﹣2)2=0.
(1)求出m,n的值.
(2)①在x軸的正半軸上存在一點M,使△COM的面積等于△ABC的面積的一半,求出點M的坐標;
②在坐標軸的其它位置是否存在點M,使△COM的面積等于△ABC的面積的一半仍然成立,若存在,請直接在所給的橫線上寫出符合條件的點M的坐標;
(3)如圖2,過點C作CD⊥y軸交y軸于點D,點P為線段CD延長線上一動點,連接OP,OE平分∠AOP,OF⊥OE,當(dāng)點P運動時,的值是否會改變?若不變,求其值;若改變,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com