【題目】已知,在ABC 中,∠A=90°,ABAC,點(diǎn) D BC 的中點(diǎn).

(1)點(diǎn) E、F 分別為 AB、AC 上的中點(diǎn),請(qǐng)按要求作出滿足條件的ABC 圖形并證明:DEDF

(2)如圖①,若點(diǎn) EF 分別為 AB、AC 上的點(diǎn),且 DEDF,求證:BEAF

(3)若點(diǎn) E、F 分別為 AB、CA 延長(zhǎng)線上的點(diǎn),且 DEDF,那么 BEAF 嗎?請(qǐng)利用圖②說明理由.

【答案】(1)見解析;(2)見解析;(3) BEAF見解析.

【解析】

(1)畫圖并證明△AED≌△AFD,可得DEDF;

(2)如圖,證明△BDE≌△ADF,可得BEAF;

(3)如圖,證明△EDB≌△FDA,可得BEAF

1)如圖,連接AD

∵∠A=90°,ABAC,點(diǎn)DBC的中點(diǎn),∴∠EAD=∠FAD

∵點(diǎn)E、F分別為ABAC上的中點(diǎn),∴AEAB,AFAC

在△AED和△AFD中,∵,∴△AED≌△AFD(SAS),∴DEDF;

(2)連接AD如圖所示

∵∠BAC=90°,ABAC,∴△ABC為等腰直角三角形,∠B=45°.

∵點(diǎn)DBC的中點(diǎn),∴ADBCBD,∠FAD=45°.

∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF

在△BDE和△ADF中,∵,∴△BDE≌△ADF(ASA),∴BEAF;

(3)BEAF證明如下

連接AD如圖所示

∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.

∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA

在△EDB和△FDA中,∵,∴△EDB≌△FDA(ASA),∴BEAF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知直線l1l2,且l3l1l2分別相交于A,B兩點(diǎn),l4l1,l2分別交于C,D兩點(diǎn),∠ACP1,BDP2,CPD3

點(diǎn)P在線段AB

(1)若∠122°,233°,則∠3________

(2)試找出∠1,23之間的等量關(guān)系,并說明理由;

(3)應(yīng)用(2)中的結(jié)論解答下列問題

如圖②,點(diǎn)AB處北偏東40°的方向上,在C處的北偏西45°的方向上,求∠BAC的度數(shù);

(4)如果點(diǎn)P在直線l3上且在AB兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí),其他條件不變,試探究∠1,23之間的關(guān)系(點(diǎn)PA,B兩點(diǎn)不重合),直接寫出結(jié)論即可.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次中學(xué)生田徑運(yùn)動(dòng)會(huì)上,根據(jù)參加男子跳高初賽的運(yùn)動(dòng)員的成績(jī)(單位:m),繪制出如下兩幅統(tǒng)計(jì)圖.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:

(1)扇形統(tǒng)計(jì)圖中a= , 初賽成績(jī)?yōu)?.70m所在扇形圖形的圓心角為°;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)這組初賽成績(jī)的眾數(shù)是 m,中位數(shù)是 m;
(4)根據(jù)這組初賽成績(jī)確定8人進(jìn)入復(fù)賽,那么初賽成績(jī)?yōu)?.60m的運(yùn)動(dòng)員楊強(qiáng)能否進(jìn)入復(fù)賽?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在線段AB的延長(zhǎng)線上,ACBC,DAB的反向延長(zhǎng)線上,BDDC.

(1)在圖上畫出點(diǎn)C和點(diǎn)D的位置;

(2)設(shè)線段AB長(zhǎng)為x,則BC__ __AD__ __;(用含x的代數(shù)式表示)

(3)設(shè)AB12 cm,求線段CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解決問題時(shí)需要思考:是否解決過與其類似的問題.小明從問題1解題思路中獲得啟發(fā)從而解決了問題2.
(1)問題1:如圖①,在正方形ABCD中,E、F是BC、CD上兩點(diǎn),∠EAF=45°.
求證:∠AEF=∠AEB.
小明給出的思路為:延長(zhǎng)EB到H,滿足BH=DF,連接AH.請(qǐng)完善小明的證明過程.
(2)問題2:如圖②,在等腰直角△ABC中,∠ACB=90°,AC=BC=4,D為AB中點(diǎn),E、F是AC、BC邊上兩點(diǎn),∠EDF=45°.

①求點(diǎn)D到EF的距離.
②若AE=a,則SDEF=(用含字母a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,2條直線 最多有=1個(gè)交點(diǎn),3條直線最多有=3個(gè)交點(diǎn),4條直線最多有=6個(gè)交點(diǎn),……由此猜想,8條直線最多有___個(gè)交點(diǎn).

A. 32 B. 16 C. 28 D. 40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生課外閱讀的喜好,某校從八年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,調(diào)查要求每人只選取一種喜歡的書籍,如果沒有喜歡的書籍,則作其它類統(tǒng)計(jì)。圖(1)與圖(2)是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖。以下結(jié)論不正確的是( )

A. 由這兩個(gè)統(tǒng)計(jì)圖可知喜歡科普常識(shí)的學(xué)生有90人.

B. 若該年級(jí)共有1200名學(xué)生,則由這兩個(gè)統(tǒng)計(jì)圖可估計(jì)喜愛科普常識(shí)的學(xué)生約有360個(gè).

C. 由這兩個(gè)統(tǒng)計(jì)圖不能確定喜歡小說的人數(shù).

D. 在扇形統(tǒng)計(jì)圖中,漫畫所在扇形的圓心角為72°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D在邊AB上,點(diǎn)E在邊AC上,CE=BD,連接CD,BE,BECD相交于點(diǎn)F.

(1)如圖1,若△ACD為等邊三角形,且CE=DF,求∠CEF的度數(shù);

(2)如圖2,若AC=AD,求證:EF=FB;

(3)如圖3,在(2)的條件下,若∠CFE=45°,BCD的面積為4,求線段CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,BD為⊙O的直徑,BD與AC相交于點(diǎn)H,AC的延長(zhǎng)線與過點(diǎn)B的直線相交于點(diǎn)E,且∠A=∠EBC.
(1)求證:BE是⊙O的切線;
(2)已知CG∥EB,且CG與BD、BA分別相交于點(diǎn)F、G,若BGBA=48,F(xiàn)G= ,DF=2BF,求AH的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案