如下4個圖中,不同的矩形ABCD,若把D點沿AE對折,使D點與BC上的F點重合;
(1)圖①中,若DE︰EC=2︰1,求證:△ABF∽△AFE∽△FCE;并計算BF︰FC;
(2)圖②中若DE︰EC=3︰1,計算BF︰FC= ;圖③中若DE︰EC=4︰1,計算BF︰FC= ;
(3)圖④中若DE︰EC=︰1,猜想BF︰FC= ;并證明你的結(jié)論
(1)根據(jù)折疊的性質(zhì)及矩形的性質(zhì)可證得△ABF∽△AFE∽△FCE,再根據(jù)相似三角形的性質(zhì)求解即可,1:1;(2)1:2,1:3;(3)1︰(n-1)
解析試題分析:根據(jù)折疊的性質(zhì)及矩形的性質(zhì)可證得△ABF∽△AFE∽△FCE,再根據(jù)相似三角形的性質(zhì)求解即可.
解:(1)∵∠BAF+∠AFB=90°,∠CFE+∠AFB=90°
∴∠BAF=∠CFE
∵∠B=∠C=90°
∴△ABF∽△FCE
∴BF︰CE=AB︰FC=AF︰FE
∴AB︰AF=BF︰FE
∵∠B=∠AFE=90°
∴△ABF∽△AFE
∴△ABF∽△AFE∽△FCE
∵DE︰EC=2︰1
∴FE︰EC=2︰1
∴BF︰FC=1︰1
(2)若DE︰EC=3︰1,則BF︰FC=1︰2;若DE︰EC=4︰1,計算BF︰FC=1︰3;
(3)∵DE︰EC=︰1
∴FE︰EC=︰1
∴BF︰FC=1︰(n-1).
考點:相似三角形的綜合題
點評:相似三角形的綜合題是初中數(shù)學(xué)的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,梯形ABCD是一個攔河壩的截面圖,壩高為6米.背水坡AD的坡角為,為了提高河壩的抗洪能力,防汛指揮部決定加固河壩,若壩頂CD加寬0.8米,新的背水坡EF的坡度為1:1.4.河壩總長度為500米.
(1)求完成該工程需要多少立方米方土?
(2)某工程隊在加固600立方米土后,采用新的加固模式,這樣每天加固方數(shù)是原來的2倍,結(jié)果只用11天完成了大壩加固的任務(wù).請你求出該工程隊原來每天加固多少立方米土?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形ABCD中,∠ACB=30°,將一塊直角三角板的直角頂點P放在兩對角線AC,BD的交點處,以點P為旋轉(zhuǎn)中心轉(zhuǎn)動三角板,并保證三角板的兩直角邊分別于邊AB,BC所在的直線相交,交點分別為E,F(xiàn).
(1)當(dāng)PE⊥AB,PF⊥BC時,如圖1,則的值為 ;
(2)現(xiàn)將三角板繞點P逆時針旋轉(zhuǎn)α(0°<α<60°)角,如圖2,求的值;
(3)在(2)的基礎(chǔ)上繼續(xù)旋轉(zhuǎn),當(dāng)60°<α<90°,且使AP:PC=1:2時,如圖3,的值是否變化?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
定義:如圖1,點C在線段AB上,若滿足AC2=BC•AB,則稱點C為線段AB的黃金分割點.
如圖2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于點D.
(1)求證:點D是線段AC的黃金分割點;
(2)求出線段AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
小穎同學(xué)到學(xué)校領(lǐng)來n盒粉筆,整齊地摞在講桌上,其三視圖如圖,則n的值是( 。
A.6 | B.7 | C.8 | D.9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
“橫看成嶺側(cè)成峰”從數(shù)學(xué)的角度解釋為( 。
A.從不同的方向觀察同一建筑物時,看到的圖形不一樣 |
B.從同一方向觀察同一建筑物時,看到的圖形不一樣 |
C.從同一的方向觀察不同的建筑物時,看到的圖形一樣 |
D.以上答案都不對 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com