精英家教網 > 初中數學 > 題目詳情
(2007•淄博)在平面直角坐標系中,△AOB的位置如圖所示,已知∠AOB=90°,AO=BO,點A的坐標為(-3,1).
(1)求點B的坐標;
(2)求過A,O,B三點的拋物線的解析式;
(3)設點B關于拋物線的對稱軸l的對稱點為B1,求△AB1B的面積.

【答案】分析:(1)如果過A作AC⊥x軸,垂足為C,作BD⊥x軸垂足為D.不難得出△AOC和△BOD全等,那么B的橫坐標就是A點縱坐標的絕對值,B的縱坐標就是A點的橫坐標的絕對值,由此可得出B的坐標.
(2)已知了A,O的坐標,根據(1)求出的B點的坐標,可用待定系數法求出拋物線的解析式.
(3)根據(2)的解析式可得出對稱軸的解析式,然后根據B點的坐標得出B1的坐標,那么BB1就是三角形的底邊,B的縱坐標與A的縱坐標的差的絕對值就是△ABB1的高,由此可求出其面積.
解答:解:(1)作AC⊥x軸,垂足為C,作BD⊥x軸垂足為D.
則∠ACO=∠ODB=90°,
∴∠AOC+∠OAC=90°.
又∵∠AOB=90°,
∴∠AOC+∠BOD=90°
∴∠OAC=∠BOD.
在△ACO和△ODB中,

∴△ACO≌△ODB(AAS).
∴OD=AC=1,DB=OC=3.
∴點B的坐標為(1,3).

(2)因拋物線過原點,
故可設所求拋物線的解析式為y=ax2+bx.
將A(-3,1),B(1,3)兩點代入,
,
解得:a=,b=
故所求拋物線的解析式為y=x2+x.

(3)在拋物線y=x2+x中,對稱軸l的方程是x=-=-
點B1是B關于拋物線的對稱軸l的對稱點,
故B1坐標(-,3)
在△AB1B中,底邊B1B=,高的長為2.
故S△AB1B=××2=
點評:本題主要考查了全等三角形的判定以及用待定系數法求二次函數解析式,二次函數的性質等知識點.
練習冊系列答案
相關習題

科目:初中數學 來源:2007年山東省棗莊市中考數學試卷(解析版) 題型:解答題

(2007•淄博)在平面直角坐標系中,△AOB的位置如圖所示,已知∠AOB=90°,AO=BO,點A的坐標為(-3,1).
(1)求點B的坐標;
(2)求過A,O,B三點的拋物線的解析式;
(3)設點B關于拋物線的對稱軸l的對稱點為B1,求△AB1B的面積.

查看答案和解析>>

科目:初中數學 來源:2007年山東省東營市中考數學試卷(解析版) 題型:解答題

(2007•淄博)在平面直角坐標系中,△AOB的位置如圖所示,已知∠AOB=90°,AO=BO,點A的坐標為(-3,1).
(1)求點B的坐標;
(2)求過A,O,B三點的拋物線的解析式;
(3)設點B關于拋物線的對稱軸l的對稱點為B1,求△AB1B的面積.

查看答案和解析>>

科目:初中數學 來源:2007年山東省德州市中考數學試卷(解析版) 題型:解答題

(2007•淄博)在平面直角坐標系中,△AOB的位置如圖所示,已知∠AOB=90°,AO=BO,點A的坐標為(-3,1).
(1)求點B的坐標;
(2)求過A,O,B三點的拋物線的解析式;
(3)設點B關于拋物線的對稱軸l的對稱點為B1,求△AB1B的面積.

查看答案和解析>>

科目:初中數學 來源:2010年江西省撫州市臨川區(qū)羅湖中學數學中考模擬試卷(三)(解析版) 題型:選擇題

(2007•淄博)在下圖右側的四個三角形中,不能由△ABC經過旋轉或平移得到的是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案