【題目】如圖,已知△ABC和△ECD都是等邊三角形, B、C、D在一條直線上。
求證:(1)BE=AD;
(2)CF=CH;
(3)△FCH是等邊三角形;
(4)FH∥BD;
(5)求∠EMD的度數(shù)。;
【答案】(1)證明見解析;(2)證明見解析;(3)證明見解析;(4)證明見解析;(5)∠EMD
的度數(shù)為60°.
【解析】試題分析:(1)根據(jù)△ABC和△CDE都是等邊三角形得出BC=AC,CE=CD,∠BCA=∠ECD=60°,再由SAS定理即可得出△BCE≌△ACD,進而得到BE=AD;(2)(3)利用△BCE≌△ACD得出∠CBF=∠CAH,再運用平角定義得出∠BCF=∠ACH進而得出△BCF≌△ACH因此CF=CH,再由∠ACH=60°根據(jù)“有一個角是60°的三角形是等邊三角形可得△CFH是等邊三角形.(4)由△FCH是等邊三角形,∠FHC =∠HCD =60°,即可得到FH∥BD;(5)
由△BCE≌△ACD得∠BEC =∠ADC,∠MEH =∠CDH∠MHE =∠CHD可得∠EMH =∠HCD=60°.
試題解析:(1)∵△ABC和△DEC是等邊三角形,
∴AC=BC.CE=CD,∠ACB=∠ECD=60°,
∴∠ACB+∠ACE=∠ECD+∠ACE,
∴∠BCE=∠ACD,
在△BCE和△ACD中,
AC=BC ∠BCE=∠ACD CE=CD
∴△BCE≌△ACD(SAS), ∴AD=BE.
(2)∵△BCE≌△ACD,
∴∠BCE=∠ADC.
∵∠FCE=∠HCD=60°
在△FCE和△HCD中,
∠BCE=∠ADC CE =CD ∠FCE=∠HCD
∴△BCE≌△ACD (ASA),
∴CF =CH
: 在△CFH中
∵ CF=CH ∠FCH=60°
∴△FCH是等邊三角形
(4): ∵△FCH是等邊三角形
∴∠FHC =60°
∵∠HCD =60° ∴∠FHC=∠HCD
∴FH∥BD
(5): ∵ △BCE≌△ACD
∴∠BEC =∠ADC
在△MHE和△CHD中
∵∠MEH =∠CDH
∠MHE =∠CHD(對頂角相等)
∴∠EMH =∠HCD=60°
∠EMD=60°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,給出下列結(jié)論: ①2a+b>0;②b>a>c;③若﹣1<m<n<1,則m+n<﹣ ;④3|a|+|c|<2|b|.
其中正確的結(jié)論是(寫出你認為正確的所有結(jié)論序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC 的角平分線與 BC 的垂直平分線交于點 D,DE⊥AB, DF⊥AC,垂足分別為 E,F(xiàn).若 AB=10,AC=8,求 BE 長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“中國夢”關(guān)乎每個人的幸福生活,為進一步感知我們身邊的幸福,展現(xiàn)成都人追夢的風(fēng)采,我市某校開展了以“夢想中國,逐夢成都”為主題的攝影大賽,要求參賽學(xué)生每人交一件作品.現(xiàn)將參賽的50件作品的成績(單位:分)進行統(tǒng)計如下:
等級 | 成績(用s表示) | 頻數(shù) | 頻率 |
A | 90≤s≤100 | x | 0.08 |
B | 80≤s<90 | 35 | y |
C | s<80 | 11 | 0.22 |
合 計 | 50 | 1 |
請根據(jù)上表提供的信息,解答下列問題:
(1)表中的x的值為 , y的值為
(2)將本次參賽作品獲得A等級的學(xué)生依次用A1 , A2 , A3 , …表示,現(xiàn)該校決定從本次參賽作品中獲得A等級學(xué)生中,隨機抽取兩名學(xué)生談?wù)勊麄兊膮①愺w會,請用樹狀圖或列表法求恰好抽到學(xué)生A1和A2的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D是邊AC上一點,BC=BD=AD,則∠A的大小是( 。
A. 36° B. 54° C. 72° D. 30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用A、B兩種機器人搬運大米,A型機器人比B型機器人每小時多搬運20袋大米,A型機器人搬運700袋大米與B型機器人搬運500袋大米所用時間相等.求A、B型機器人每小時分別搬運多少袋大米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩工程隊承包一項工程,如果甲工程隊單獨施工,恰好如期完成;如果乙工程隊單獨施工就要超過6個月才能完成,現(xiàn)在甲、乙兩隊先共同施工4個月,剩下的由乙隊單獨施工,則恰好如期完成.
(1)問原來規(guī)定修好這條公路需多少長時間?
(2)現(xiàn)要求甲、乙兩個工程隊都參加這項工程,但由于受到施工場地條件限制,甲、乙兩工程隊不能同時施工.已知甲工程隊每月的施工費用為4萬元,乙工程隊每月的施工費用為2萬元.為了結(jié)算方便,要求:甲、乙的施工時間為整數(shù)個月,不超過15個月完成.當施工費用最低時,甲、乙各施工了多少個月?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com