(2009•撫順)如圖所示,AC與⊙O相切于點C,線段AO交⊙O于點B.過點B作BD∥AC交⊙O于點D,連接CD、OC,且OC交DB于點E.若∠CDB=30°,DB=5cm.
(1)求⊙O的半徑長;
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結果保留π)

【答案】分析:(1)根據(jù)切線的性質(zhì)定理和平行線的性質(zhì)定理得到OC⊥BD,根據(jù)垂徑定理得到BE的長,再根據(jù)圓周角定理發(fā)現(xiàn)∠BOE=60°,從而根據(jù)銳角三角函數(shù)求得圓的半徑;
(2)結合(1)中的有關結論證明△DCE≌△BOE,則它們的面積相等,故陰影部分的面積就是扇形OBC的面積.
解答:解:(1)∵AC與⊙O相切于點C,
∴∠ACO=90°
∵BD∥AC∴∠BEO=∠ACO=90°,
∴DE=EB=BD=(cm)
∵∠D=30°,
∴∠O=2∠D=60°,
在Rt△BEO中,sin60°=
∴OB=5,即⊙O的半徑長為5cm.

(2)由(1)可知,∠O=60°,∠BEO=90°,
∴∠EBO=∠D=30°
又∵∠CED=∠BEO,BE=ED,
∴△CDE≌△OBE
,
答:陰影部分的面積為
點評:本題主要考查切線的性質(zhì)定理、平行線的性質(zhì)定理、垂徑定理以及全等三角形的判定方法.能夠熟練解直角三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《尺規(guī)作圖》(01)(解析版) 題型:解答題

(2009•撫順)如圖所示,已知:Rt△ABC中,∠ACB=90°.
(1)尺規(guī)作圖:作∠BAC的平分線AM交BC于點D(只保留作圖痕跡,不寫作法);
(2)在(1)所作圖形中,將Rt△ABC沿某條直線折疊,使點A與點D重合,折痕EF交AC于點E,交AB于點F,連接DE、DF,再展回到原圖形,得到四邊形AEDF.
①試判斷四邊形AEDF的形狀,并證明;
②若AC=8,CD=4,求四邊形AEDF的周長和BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《圖形認識初步》(02)(解析版) 題型:填空題

(2009•撫順)如圖所示,直線a∥b,點B在直線b上,且AB⊥BC,∠2=59°,則∠1=    度.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年河南省漯河市龍城一中中考第六次模擬數(shù)學試卷(解析版) 題型:解答題

(2009•撫順)如圖所示,AC與⊙O相切于點C,線段AO交⊙O于點B.過點B作BD∥AC交⊙O于點D,連接CD、OC,且OC交DB于點E.若∠CDB=30°,DB=5cm.
(1)求⊙O的半徑長;
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源:2009年遼寧省撫順市中考數(shù)學試卷(解析版) 題型:解答題

(2009•撫順)如圖所示,已知:Rt△ABC中,∠ACB=90°.
(1)尺規(guī)作圖:作∠BAC的平分線AM交BC于點D(只保留作圖痕跡,不寫作法);
(2)在(1)所作圖形中,將Rt△ABC沿某條直線折疊,使點A與點D重合,折痕EF交AC于點E,交AB于點F,連接DE、DF,再展回到原圖形,得到四邊形AEDF.
①試判斷四邊形AEDF的形狀,并證明;
②若AC=8,CD=4,求四邊形AEDF的周長和BD的長.

查看答案和解析>>

同步練習冊答案