△ABC中,∠A,∠B,∠C的對(duì)邊分別記為a,b,c,由下列條件不能判定△ABC為直角三角形的是( 。
分析:由三角形內(nèi)角和定理及勾股定理的逆定理進(jìn)行判斷即可.
解答:解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,則∠C=90°,是直角三角形;
B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,則∠C=90°,是直角三角形;
C、由a2=c2-b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;
D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.
故選D.
點(diǎn)評(píng):本題考查了直角三角形的判定,注意在應(yīng)用勾股定理的逆定理時(shí),應(yīng)先認(rèn)真分析所給邊的大小關(guān)系,確定最大邊后,再驗(yàn)證兩條較小邊的平方和與最大邊的平方之間的關(guān)系,進(jìn)而作出判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,DE∥BC,DE與AB相交于D,與AC相交于E,若AC=8,EC=3,DB=4,則AD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,∠C=90°,若∠B=60°,b=30,則a+c=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AC=2,AB=3,D是AC上一點(diǎn),E是AB上一點(diǎn),且∠ADE=∠B,設(shè)AD=x,AE=y,則y與x之間的函數(shù)關(guān)系式是( 。
A、y=
3
2
x(0<x<2)
B、y=
3
2
x(0<x≤2)
C、y=
2
3
x(0<x≤2)
D、y=
2
3
x(0<x<2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=8,AC=6,BC=7,點(diǎn)D在AC上,AD=2,
(1)過(guò)點(diǎn)D畫直線,使它截△ABC的兩邊所得的小三角形與△ABC相似(圖形備用,標(biāo)出與∠B相等的角);
(2)若截線與AB交于E,求ED的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、在△ABC中,AB=3,BC=8,則AC的取值范圍是
5<AC<11

查看答案和解析>>

同步練習(xí)冊(cè)答案