【題目】如圖,四邊形ABCD是邊長(zhǎng)為6的正方形,點(diǎn)E在邊AB上,BE4,過(guò)點(diǎn)EEFBC,分別交BDCD于點(diǎn)G,F兩點(diǎn),若M,N分別是DGCE的中點(diǎn),則MN的長(zhǎng)是______

【答案】

【解析】

作輔助線,構(gòu)建矩形MHPK和直角三角形NMH,利用平行線分線段成比例定理或中位線定理得:MKFK1,NP3,PF2,利用勾股定理可得MN的長(zhǎng).

過(guò)MMKCDK,過(guò)NNPCDP,過(guò)MMHPNH,

MKEFNP,

∵∠MKP=∠MHP=∠HPK90°,

∴四邊形MHPK是矩形,

MKPH,MHKP,

NPEF,NEC的中點(diǎn),

PFFCBE2,NPEF3,

同理得:FKDK1,

∵四邊形ABCD為正方形,

∴∠BDC45°,

∴△MKD是等腰直角三角形,

MKDK1,NHNPHP312,

MH2+13

RtMNH中,由勾股定理得:MN

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,0),以O(shè)A為邊在第四象限內(nèi)作等邊△AOB,點(diǎn)C為x軸的正半軸上一動(dòng)點(diǎn)(OC>1),連接BC,以BC為邊在第四象限內(nèi)作等邊△CBD,直線DA交y軸于點(diǎn)E.

(1)試問(wèn)△OBC與△ABD全等嗎?并證明你的結(jié)論;

(2)隨著點(diǎn)C位置的變化,點(diǎn)E的位置是否會(huì)發(fā)生變化?若沒(méi)有變化,求出點(diǎn)E的坐標(biāo);若有變化,請(qǐng)說(shuō)明理由;

(3)如圖2,以O(shè)C為直徑作圓,與直線DE分別交于點(diǎn)F、G,設(shè)AC=m,AF=n,用含n的代數(shù)式表示m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy內(nèi),函數(shù)y=x的圖象與反比例函數(shù)y=(k≠0)圖象有公共點(diǎn)A,點(diǎn)A的坐標(biāo)為(4,a),AB⊥x軸,垂足為點(diǎn)B.

(1)求反比例函數(shù)的解析式;

(2)點(diǎn)C是第一象限內(nèi)直線OA上一點(diǎn),過(guò)點(diǎn)C作直線CD∥AB,與反比例函數(shù)y=(k≠0)的圖象交于點(diǎn)D,且點(diǎn)C在點(diǎn)D的上方,CD=AB,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△ADE都是等腰直角三角形,CEBD相交于點(diǎn)M,BDAC于點(diǎn)N.

1)證明:BDCE;

2)證明:BDCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.

(1)在圖1中證明CE=CF;

(2)若∠ABC=90°,GEF的中點(diǎn)(如圖2),直接寫出∠BDG的度數(shù);

(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,BD、CE分別是邊ACAB上的中線,BDCE交于點(diǎn)O

1)如圖1,若M、N分別是OB、OC的中點(diǎn),求證:OB=2OD;

2)如圖2,若BD⊥CE,AB=8BC=6,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AD是高,BE是中線,CF是角平分線,CFADG,交BEH.下列結(jié)論:SABESBCE;AFG=∠AGFFAG2ACF;BHCH.其中所有正確結(jié)論的序號(hào)是

A.①②③④B.①②③C.②④D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:PCD是等腰直角三角形,∠DPC=90°,∠APB=135°

求證:(1)△PAC∽△BPD;

(2)若AC=3,BD=1,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,DE分別是AB、AC的中點(diǎn),連接CD.過(guò)EEFDCBC的延長(zhǎng)線于F

1)證明:四邊形CDEF是平行四邊形;

2)若四邊形CDEF的周長(zhǎng)是18cm,AC的長(zhǎng)為6cm,求線段AB的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案