如圖,已知A,B兩點是直線AB與軸的正半軸,軸的正半軸的交點,且OA,OB的長分別是的兩個根(OA>OB),射線BC平分∠ABO交軸于C點,若有一動點P以每秒1個單位的速度從B點開始沿射線BC移動,運動時間為t秒.
(1)設(shè)△APB和△OPB的面積分別為S1,S2,求S1∶S2;
(2)求直線BC的解析式;
(3)在點P的運動過程中,△OPB可能是等腰三角形嗎?若可能,直接寫出時間t的值,若不可能,請說明理由.
(1)s1:s2=5:3;(2)y=-2x+6;(3)6或或
解析試題分析:(1)先解方程求出OA和OB的長度,P是角平分線上的點,P到OB,AB的距離相等,而兩個三角形的高相等,S1:S2=AB:OB=5:3;
(2)過C作CD垂直AB,垂足為D,設(shè)OC=x,則CD=x,易知BD=OB,然后根據(jù)勾股定理列出方程式解答即可;
(3)分別取三個點做頂角的頂點,然后求出符合題意的t的值.
(1)解方程得x1=6,x2="8"
所以O(shè)A=8,OB=6,AB=10
因為P是角平分線上的點,P到OB,AB的距離相等,
所以S1:S2=AB:OB=5:3;
(2)過C作CD垂直AB,垂足為D,
設(shè)OC=x,則CD=x,易知BD=OB,
在直角三角形CDA中:CD2+AD2=AC2,
x2+42=(8-x)2
解得x=3
所以C點的坐標(3,0)
BC的解析式:y=-2x+6;
(3)①BP=OB時,t=6
②BP=OP時,P在OB的中垂線上,yp=3,代入直線BC的解析式得P(,3),
利用勾股定理可得BP=
;
③OB=OP時,.
考點:動點問題的綜合題
點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
科目:初中數(shù)學(xué) 來源: 題型:
1 | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
11 |
3 |
11 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
3 |
3 |
3 |
3 |
3 |
3 |
3 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com