【題目】泉州市旅游資源豐富,①清源山、②開元寺、③崇武古城三個景區(qū)是人們節(jié)假日玩的熱點(diǎn)景區(qū),張老師對八(1)班學(xué)生“五·一”小長假隨父母到這三個景區(qū)游玩的計(jì)劃做了全面調(diào)查,調(diào)查分四個類別:A、游三個景區(qū);B,游兩個景區(qū);C,游一個景區(qū):D,不到這三個景區(qū)游玩現(xiàn)根據(jù)調(diào)查結(jié)果繪制了不完整的條形統(tǒng)計(jì)圖和廟形統(tǒng)計(jì)圖,請結(jié)合圖中信息解答下列問題:
(1)八(1)班共有學(xué)生 人在扇形統(tǒng)計(jì)圖中,表示“B類別的扇形的圓心角的度數(shù)為 ;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若小華、小剛兩名同學(xué),各自從三個最區(qū)中隨機(jī)選一個作為5月1日游玩的景區(qū),請用樹狀圖或列表法求他們選中同個景區(qū)的概率.
【答案】(1) 50,72°;(2)詳見解析;(3)
【解析】
(1)根據(jù)A類別5人,占10%,可求得總?cè)藬?shù),繼而求得B類別占的百分?jǐn)?shù),則可求得“B類別”的扇形的圓心角的度數(shù);
(2)先求出D類別的人數(shù),即可將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)根據(jù)題意畫出樹狀圖,再利用概率公式求解即可求得答案.
(1)∵A類5人,占10%,∴八(1)班共有學(xué)生有:5÷10%=50(人);∴在扇形統(tǒng)計(jì)圖中,表示“B類別”的扇形的圓心角的度數(shù)為:360°=72°.
故答案為:50,72°;
(2)D類的人數(shù)有:50﹣5﹣10﹣15=20(人),如圖:
(3)分別用1,2,3表示清源山、開元寺、崇武古城,畫樹狀圖得:
∵共有9種等可能的結(jié)果,他們選中同個景區(qū)的有3種情況,∴他們選中同個景區(qū)的概率為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CF切⊙O于點(diǎn)C,BF⊥CF于點(diǎn)F,點(diǎn)D在⊙O上,CD交AB于點(diǎn)E,∠BCE=∠BCF.
(1)求證:弧AC=弧AD;
(2)點(diǎn)G在⊙O上,∠GCD=∠FCD,連接DO并延長交CG于點(diǎn)H,求證:CH=GH;
(3)在(2)的條件下,連接AG,AG=3,CF=2,求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫的一角兩邊為邊,用總長為的圍網(wǎng)在水庫中圍成了如圖所示的①②③三塊區(qū)域,其中區(qū)域①為直角三角形,區(qū)域②③為矩形,而且這三塊區(qū)域的面積相等,四邊形為直角梯形.
(1)設(shè)的長度為,則的長為______;
(2)設(shè)四邊形的面積為,求與之間的函數(shù)關(guān)系式,并注明自變量的取值范圍;
(3)為何值時,有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里,裝有三個分別寫有數(shù)字1,2,3的小球,它們的形狀、大小、質(zhì)地等完全相同,先從盒子里隨機(jī)取出一個小球,記下數(shù)字后放回盒子,搖勻后再隨機(jī)取出一個小球,記下數(shù)字.請你用畫樹形圖或列表的方法,求:
(1)兩次取出小球上的數(shù)字相同的概率;
(2)兩次取出小球上的數(shù)字之和大于3的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:
①4ac<b2;
②a>b>c;
③一次函數(shù)y=ax+c的圖象不經(jīng)第四象限;
④m(am+b)+b<a(m是任意實(shí)數(shù));
⑤3b+2c>0.
其中正確的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2.
(1)求OD的長.
(2)求EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動點(diǎn)P從點(diǎn)B出發(fā),在BA邊上以每秒5cm的速度向點(diǎn)A勻速運(yùn)動,同時動點(diǎn)Q從點(diǎn)C出發(fā),在CB邊上以每秒4cm的速度向點(diǎn)B勻速運(yùn)動,運(yùn)動時間為t秒(0<t<2),連接PQ.
(1)若△BPQ與△ABC相似,求t的值;
(2)試探究t為何值時,△BPQ的面積是cm2;
(3)直接寫出t為何值時,△BPQ是等腰三角形;
(4)連接AQ,CP,若AQ⊥CP,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點(diǎn)分別為D、E、F,∠A=80°,點(diǎn)P為⊙O上任意一點(diǎn)(不與E、F重合),則∠EPF=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,交邊于點(diǎn).
(1)當(dāng)點(diǎn)與恰好重合時(如圖1),求的長;
(2)問:是否可能使、與都相似?若能,請求出此時的長;若不能,請說明理由(如圖2).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com