某水果批發(fā)商銷(xiāo)售每箱進(jìn)價(jià)為40元的蘋(píng)果,物價(jià)部門(mén)規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格銷(xiāo)售,平均每天銷(xiāo)售90箱,價(jià)格每提高1元,平均每天少銷(xiāo)售3箱.
(1)求平均每天銷(xiāo)售量箱與銷(xiāo)售價(jià)元/箱之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售價(jià)(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋(píng)果的銷(xiāo)售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?

(1);(2);(3)55,1125.

解析試題分析:本題是通過(guò)構(gòu)建函數(shù)模型解答銷(xiāo)售利潤(rùn)的問(wèn)題.依據(jù)題意易得出平均每天銷(xiāo)售量(y)與銷(xiāo)售價(jià)x(元/箱)之間的函數(shù)關(guān)系式為,然后根據(jù)銷(xiāo)售利潤(rùn)=銷(xiāo)售量×(售價(jià)﹣進(jìn)價(jià)),列出平均每天的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售價(jià)x(元/箱)之間的函數(shù)關(guān)系式,再依據(jù)函數(shù)的增減性求得最大利潤(rùn).
試題解析:(1)由題意得:,化簡(jiǎn)得:
(2)由題意得:;
(3);∵,∴拋物線(xiàn)開(kāi)口向下.當(dāng)時(shí),w有最大值.又,w隨x的增大而增大.∴當(dāng)元時(shí),w的最大值為1125元.∴當(dāng)每箱蘋(píng)果的銷(xiāo)售價(jià)為55元時(shí),可以獲得1125元的最大利潤(rùn).
考點(diǎn):二次函數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

拋物線(xiàn)的頂點(diǎn)坐標(biāo)是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

二次函數(shù)y=﹣x2+bx+c的圖象如圖所示,則一次函數(shù)y=bx+c的圖象不經(jīng)過(guò)第   象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

若函數(shù)y=mx2+2x+1的圖象與x軸只有一個(gè)公共點(diǎn),則常數(shù)m的值是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

有下列4個(gè)命題:
①方程的根是
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,則CD=3.
③點(diǎn)P(x,y)的坐標(biāo)x,y滿(mǎn)足x2+y2+2x﹣2y+2=0,若點(diǎn)P也在的圖象上,則k=﹣1.
④若實(shí)數(shù)b、c滿(mǎn)足1+b+c>0,1﹣b+c<0,則關(guān)于x的方程x2+bx+c=0一定有兩個(gè)不相等的實(shí)數(shù)根,且較大的實(shí)數(shù)根x0滿(mǎn)足﹣1<x0<1.
上述4個(gè)命題中,真命題的序號(hào)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,矩形OABC頂點(diǎn)B的坐標(biāo)為(8,3),定點(diǎn)D的坐標(biāo)為(12,0),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸的正方向勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸的負(fù)方向勻速運(yùn)動(dòng),PQ兩點(diǎn)同時(shí)運(yùn)動(dòng),相遇時(shí)停止.在運(yùn)動(dòng)過(guò)程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=    時(shí),△PQR的邊QR經(jīng)過(guò)點(diǎn)B;
(2)設(shè)△PQR和矩形OABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)如圖2,過(guò)定點(diǎn)E(5,0)作EF⊥BC,垂足為F,當(dāng)△PQR的頂點(diǎn)R落在矩形OABC的內(nèi)部時(shí),過(guò)點(diǎn)R作x軸、y軸的平行線(xiàn),分別交EF、BC于點(diǎn)M、N,若∠MAN=45°,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線(xiàn)y=2x2-2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)寫(xiě)出以A,B,C為頂點(diǎn)的三角形面積;
(2)過(guò)點(diǎn)E(0,6)且與x軸平行的直線(xiàn)l1與拋物線(xiàn)相交于M、N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)),以MN為一邊,拋物線(xiàn)上的任一點(diǎn)P為另一頂點(diǎn)做平行四邊形,當(dāng)平行四邊形的面積為8時(shí),求出點(diǎn)P、N的坐標(biāo);
(3)過(guò)點(diǎn)D(m,0)(其中m>1)且與x軸垂直的直線(xiàn)l2上有一點(diǎn)Q(點(diǎn)Q在第一象限),使得以Q,D,B為頂點(diǎn)的三角形和以B,C,O為頂點(diǎn)的三角形相似,求線(xiàn)段QD的長(zhǎng)(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知在平面直角坐標(biāo)系xOy中,拋物線(xiàn)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B右側(cè)),與y軸交于點(diǎn)C(0,-3),且OA=2OC.
(1)求這條拋物線(xiàn)的表達(dá)式及頂點(diǎn)M的坐標(biāo);
(2)求的值;
(3)如果點(diǎn)D在這條拋物線(xiàn)的對(duì)稱(chēng)軸上,且∠CAD=45º,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,拋物線(xiàn)y=ax2+bx+c(a>0)的頂點(diǎn)為M,直線(xiàn)y=m與x軸平行,且與拋物線(xiàn)交于點(diǎn)A,B,若△AMB為等腰直角三角形,我們把拋物線(xiàn)上A,B兩點(diǎn)之間的部分與線(xiàn)段AB圍成的圖形稱(chēng)為該拋物線(xiàn)對(duì)應(yīng)的準(zhǔn)蝶形,線(xiàn)段AB稱(chēng)為碟寬,頂點(diǎn)M稱(chēng)為碟頂,點(diǎn)M到線(xiàn)段AB的距離稱(chēng)為碟高.
(1)拋物線(xiàn)y=x2對(duì)應(yīng)的碟寬為   ;拋物線(xiàn)y=4x2對(duì)應(yīng)的碟寬為   ;拋物線(xiàn)y=ax2(a>0)對(duì)應(yīng)的碟寬為  ;拋物線(xiàn)y=a(x﹣2)2+3(a>0)對(duì)應(yīng)的碟寬為  
(2)拋物線(xiàn)y=ax2﹣4ax﹣(a>0)對(duì)應(yīng)的碟寬為6,且在x軸上,求a的值;
(3)將拋物線(xiàn)y=anx2+bnx+cn(an>0)的對(duì)應(yīng)準(zhǔn)蝶形記為Fn(n=1,2,3…),定義F1,F(xiàn)2,…,F(xiàn)n為相似準(zhǔn)蝶形,相應(yīng)的碟寬之比即為相似比.若Fn與Fn﹣1的相似比為,且Fn的碟頂是Fn﹣1的碟寬的中點(diǎn),現(xiàn)將(2)中求得的拋物線(xiàn)記為y1,其對(duì)應(yīng)的準(zhǔn)蝶形記為F1
①求拋物線(xiàn)y2的表達(dá)式;
②若F1的碟高為h1,F(xiàn)2的碟高為h2,…Fn的碟高為hn,則hn=  ,F(xiàn)n的碟寬有端點(diǎn)橫坐標(biāo)為 2 ;F1,F(xiàn)2,…,F(xiàn)n的碟寬右端點(diǎn)是否在一條直線(xiàn)上?若是,直接寫(xiě)出該直線(xiàn)的表達(dá)式;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案