【題目】閱讀下面內(nèi)容:我們已經(jīng)學(xué)習(xí)了《二次根式》和《乘法公式》,聰明的你可以發(fā)現(xiàn):

當(dāng)a0b0時(shí):

2=a2+b≥0

a+b≥2,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào).

請(qǐng)利用上述結(jié)論解決以下問題:

1)請(qǐng)直接寫出答案:當(dāng)x0時(shí),x+的最小值為   .當(dāng)x0時(shí),x+的最大值為   

2)若y=,(x>﹣1),求y的最小值;

3)如圖,四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AOB、COD的面積分別為49,求四邊形ABCD面積的最小值.

【答案】(1)2;﹣2.(2)y的最小值為9;(3)四邊形ABCD面積的最小值為25

【解析】

1)當(dāng)x0時(shí),按照公式a+b2(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))來計(jì)算即可;當(dāng)x0時(shí),﹣x0,0,則也可以按公式a+b2(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))來計(jì)算;

2)將y的分子變形,分別除以分母,展開,將含x的項(xiàng)用題中所給公式求得最小值,再加上常數(shù)即可;

3)設(shè)SBOC=x,已知SAOB=4,SCOD=9,由三角形面積公式可知:SBOCSCOD=SAOBSAOD,用含x的式子表示出SAOD,再表示出四邊形的面積,根據(jù)題中所給公式求得最小值,加上常數(shù)即可.

1)當(dāng)x0時(shí),x22

當(dāng)x0時(shí),﹣x00

∵﹣x22,∴則x(﹣x)≤﹣2,∴當(dāng)x0時(shí),x的最小值為 2.當(dāng)x0時(shí),x的最大值為﹣2

故答案為:2,﹣2

2)∵x>﹣1,∴x+10,∴y=x+1525=4+5=9,∴y的最小值為9

3)設(shè)SBOC=x,已知SAOB=4,SCOD=9

則由等高三角形可知:SBOCSCOD=SAOBSAOD,∴x9=4SAOD,∴SAOD,∴四邊形ABCD面積=4+9+x13+225

當(dāng)且僅當(dāng)x=6時(shí),取等號(hào),∴四邊形ABCD面積的最小值為25

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD,FAB上一點(diǎn)HBC延長線上一點(diǎn),連接FHFBH沿FH翻折,使點(diǎn)B的對(duì)應(yīng)點(diǎn)E落在AD,EHCD交于點(diǎn)G,連接BGFH于點(diǎn)M當(dāng)GB平分CGE時(shí),BM=2,AE=8,ED=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一元二次方程x2+2x-3=0的兩根x1x2x1x2)是拋物線y=ax2+bx+cx軸的兩個(gè)交點(diǎn)C,B的橫坐標(biāo),且此拋物線過點(diǎn)A3,6

1)求此拋物線的函數(shù)解析式;

2)設(shè)此拋物線的頂點(diǎn)為P,對(duì)稱軸與線段AC交于點(diǎn)Q,求點(diǎn)P,Q的坐標(biāo).

3)在x軸上是否存在以動(dòng)點(diǎn)M,使MQ+MA有最小值,若存在求出點(diǎn)M的坐標(biāo)和最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y軸交于點(diǎn)

(1)求拋物線的解析式;

(2)求拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo);

(3)①當(dāng)x取什么值時(shí), ? 當(dāng)x取什么值時(shí),y的值隨x的增大而減?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB90°sinA,BC8,點(diǎn)DAB的中點(diǎn),過點(diǎn)BCD的垂線,垂足為點(diǎn)E.

(1)求線段CD的長;

(2)cosABE的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在RtABC中,ABAC3,在△ABC內(nèi)作第一個(gè)內(nèi)接正方形DEFG;然后取GF的中點(diǎn)P,連接PD、PE,在△PDE內(nèi)作第二個(gè)內(nèi)接正方形HIKJ;再取線段KJ的中點(diǎn)Q,在△QHI內(nèi)作第三個(gè)內(nèi)接正方形依次進(jìn)行下去,則第2014個(gè)內(nèi)接正方形的邊長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=30°,BOM上一點(diǎn),BAONA,四邊形ABCD為正方形,P為射線BM上一動(dòng)點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°CE,連結(jié)BE,若AB=4,則BE的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,MOA的中點(diǎn),弦CDAB于點(diǎn)M,過點(diǎn)DDECACA的延長線于點(diǎn)E

(1)連接AD,則∠OAD   °;

(2)求證:DE⊙O相切;

(3)點(diǎn)F上,∠CDF45°,DFAB于點(diǎn)N.若DE3,求FN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為九年級(jí)數(shù)學(xué)競賽獲獎(jiǎng)選手購買以下三種獎(jiǎng)品,其中小筆記本每本5元,大筆記本每本7元,鋼筆每支10元,購買的大筆記本的數(shù)量是鋼筆數(shù)量的2倍,共花費(fèi)346元,若使購買的獎(jiǎng)品總數(shù)最多,則這三種獎(jiǎng)品的購買數(shù)量各為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案