【題目】某工廠一種邊長為m厘米的正方形地磚,材料的成本價為每平方厘米n元,如果將地磚的一邊擴(kuò)大5厘米,另一邊縮短5厘米,改成生產(chǎn)長方形的地磚,這種長方形地磚與正方形的地磚相比,每塊的材料成本價變化情況是( 。
A.沒有變化
B.減少了5n元
C.增加5n元
D.減少了25n元

【答案】D
【解析】解:根據(jù)題意得:nm2﹣(m+5)(m﹣5)n=nm2﹣nm2+25n=25n,
則減少了25n元.
故選D.
根據(jù)題意列出關(guān)系式,去括號合并得到結(jié)果,即可做出判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出一個同時滿足下面兩個條件的一次函數(shù)的解析式
條件:①y隨x的增大而減;②圖象經(jīng)過點(0,2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)m為常數(shù))的圖象與x軸交于點A(﹣3,0),與y軸交于點C.以直線x=1為對稱軸的拋物線y=ax2+bx+ca,b,c為常數(shù),且a≠0)經(jīng)過AC兩點,并與x軸的正半軸交于點B

(1)求m的值及拋物線的函數(shù)表達(dá)式;

(2)設(shè)Ey軸右側(cè)拋物線上一點,過點E作直線AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,CE,F為頂點的四邊形是平行四邊形?若存在,求出點E的坐標(biāo)及相應(yīng)的平行四邊形的面積;若不存在,請說明理由;

(3)若P是拋物線對稱軸上使△ACP的周長取得最小值的點,過點P任意作一條與y軸不平行的直線交拋物線于M1x1,y1),M2x2y2)兩點,試探究是否為定值,并寫出探究過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】選若(x+3)(x-5)=x2+mx-15,則m等于 ( )

A. -2 B. 2 C. -5 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,過AD的中點O作EF⊥AD,分別交AB、AC于點E、F,連接DE、DF.

(1)判斷四邊形AFDE是什么四邊形?請說明理由;

(2)若BD=8,CD=3,AE=4,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)不改變分式的值,使分式 的分子與分母的各項的系數(shù)是整數(shù).
(2)不改變分式的值,使分式 的分子與分母的最高次項的系數(shù)是正數(shù).
(3)當(dāng)x滿足什么條件時,分式 的值,①等于0?②小于0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的△OAB1,△B1A1B2,△B2A2B3,…都是邊長為2的等邊三角形,點A在y軸上,點O,B1,B2,B3…都在直線l上,則點B2017的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC的各個頂點的橫坐標(biāo)分別加3,縱坐標(biāo)不變,連接三個新的點所成的三角形是由ABC()

A.向左平移3個單位所得 B.向右平移3個單位所得

C.向上平移3個單位所得 D.向下平移3個單位所得

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達(dá)A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達(dá)A點停止運動.設(shè)P點運動時間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案