分析 由平行四邊形的性質(zhì)和角平分線的定義得出∠BAE=∠BEA,得出AB=BE=AE,所以△ABE是等邊三角形,由AB的長(zhǎng),可求出△ABE的面積,再根據(jù)△FCD與△ABC等底(AB=CD)等高(AB與CD間的距離相等),可得S△FCD=S△ABC,又因?yàn)椤鰽EC與△DEC同底等高,所以S△AEC=S△DEC,即S△ABE=S△CEF問題得解.
解答 解:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∴∠EAD=∠AEB,
又∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠BEA,
∴AB=BE,
∵AB=AE,
∴△ABE是等邊三角形,
∵AB=1cm,
∴△ABE的面積=$\frac{1}{2}$×1×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$cm2,
∵△FCD與△ABC等底(AB=CD)等高(AB與CD間的距離相等),
∴S△FCD=S△ABC,
又∵△AEC與△DEC同底等高,
∴S△AEC=S△DEC,
∴S△ABE=S△CEF=$\frac{\sqrt{3}}{4}$cm2.
故答案為:$\frac{\sqrt{3}}{4}$.
點(diǎn)評(píng) 此題考查了平行四邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角形的面積關(guān)系,解題的關(guān)鍵是首先證明△ABE是等邊三角形,求△CEF的面積轉(zhuǎn)化為求△ABE的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{AF}{AB}$=$\frac{AE}{DE}$ | B. | $\frac{AF}{CD}$=$\frac{AE}{BC}$ | C. | $\frac{AF}{AB}=\frac{EF}{CE}$ | D. | $\frac{DE}{AE}=\frac{CE}{EF}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com