【題目】如圖,是的外接圓,,點是外一點,,,則線段的最大值為( )
A.9B.4.5C.D.
【答案】C
【解析】
連接OB、OC,如圖,則△OBC是頂角為120°的等腰三角形,將△OPC繞點O順時針旋轉120°到△OMB的位置,連接MP,則∠POM=120°,MB=PC=3,OM=OP,根據(jù)等腰三角形的性質和銳角三角函數(shù)可得 ,于是求OP的最大值轉化為求PM的最大值,因為,所以當P、B、M三點共線時,PM最大,據(jù)此求解即可.
解:連接OB、OC,如圖,則OB=OC,∠BOC=2∠A=120°,將△OPC繞點O順時針旋轉120°到△OMB的位置,連接MP,則∠POM=120°,MB=PC=3,OM=OP,
過點O作ON⊥PM于點N,則∠MON=60°,MN=PM,
在直角△MON中,,∴,
∴當PM最大時,OP最大,
又因為,所以當P、B、M三點共線時,PM最大,此時PM=3+6=9,
所以OP的最大值是:.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.
(1)求此拋物線的解析式;
(2)當PA+PB的值最小時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,.點是平面內不與點,重合的任意一點.連接,將線段繞點逆時針旋轉得到線段,連接,,.
(1)觀察猜想
如圖1,當時,的值是______,直線與直線相交所成的較小角的度數(shù)是____________.(提示:求角度時可考慮延長交的延長線于)
(2)類比探究
如圖2,當時,請寫出的值及直線與直線相交所成的小角的度數(shù),并就圖2的情形說明理由.
(3)解決問題
當時,若點,分別是,的中點,點在直線上,請直接寫出點,,在同一直線上時的值_______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年3月國際風箏節(jié)期間,王大伯決定銷售一批風箏,經市場調研:蝙蝠型風箏進價每個為10元,當售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:
(1)用表達式表示蝙蝠型風箏銷售量y(個)與售價x(元)之間的函數(shù)關系(12≤x≤30);
(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應定為多少?
(3)當售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,的三個頂點都在格點上,點的坐標為,請解答下列問題:
(1)畫出關于軸對稱的,點的坐標為______;
(2)在網格內以點為位似中心,把按相似比放大,得到,請畫出;若邊上任意一點的坐標為,則兩次變換后對應點的坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某景區(qū)平面圖如圖1所示,為邊界上的點.已知邊界是一段拋物線,其余邊界均為線段,且,拋物線頂點到的距離.以所在直線為軸,所在直線為軸,建立平面直角坐標系.
求邊界所在拋物線的解析式;
如圖2,該景區(qū)管理處欲在區(qū)域內圍成一個矩形場地,使得點在邊界上,點在邊界上,試確定點的位置,使得矩形的周長最大,并求出最大周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 Rt△ABC 中BC=2,以 BC 的中點 O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點,的長為( )
A.B.C.πD.2π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y1=與一次函數(shù)y2=ax+b的圖象交于點A(﹣2,5)和點B(n,l).
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)請結合圖象直接寫出當y1≥y2時自變量x的取值范圍;
(3)點P是y軸上的一個動點,若S△APB=8,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com