【題目】合并同類項(xiàng):
(1)-a-a-a;
(2)3a2-5a2+9a2;
(3)2a2-3ab+4b2-5ab-6b2;
(4)xy-x2y2-xy-x2y2.
【答案】(1)-3a;(2) 7a2;(3) 2a2-8ab-2b2;(4) xy-x2y2
【解析】
(1)根據(jù)合并同類項(xiàng)法則直接計(jì)算即可;(2)根據(jù)合并同類項(xiàng)法則直接計(jì)算即可;(3)先確定同類項(xiàng),再根據(jù)合并同類項(xiàng)法則直接計(jì)算即可;(4)先確定同類項(xiàng),再根據(jù)合并同類項(xiàng)法則直接計(jì)算即可.
(1)-a-a-a=(-1-1-1)a=-3a;
(2)3a2-5a2+9a2=(3-5+9)a2=7a2;
(3)2a2-3ab+4b2-5ab-6b2=2a2-3ab-5ab+4b2-6b2=2a2-8ab-2b2;
(4)xy-x2y2-xy-x2y2 =xy-xy-x2y2-x2y2=xy-x2y2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)作△ABC關(guān)于y對稱的△A1B1C1,其中,點(diǎn)A、B、C的對應(yīng)點(diǎn)分別為A1、B1、C1(不要求寫作法);
(2)寫出點(diǎn)A1、B1、C1的坐標(biāo);
(3)計(jì)算△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式,能夠表示圖中陰影部分的面積的是( 。
①ac+(b﹣c)c;②ac+bc﹣c2;③ab﹣(a﹣c)(b﹣c);④(a﹣c)c+(b﹣c)c+c2
A. ①②③④ B. ①②③ C. ①② D. ①
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB>AC,AD平分∠BAC
(1)尺規(guī)作圖:在AD上標(biāo)出一點(diǎn)P,使得點(diǎn)P到點(diǎn)B和點(diǎn)C的距離相等(不寫作法,但必須保留作圖痕跡);
(2)過點(diǎn)P作PE⊥AB于點(diǎn)E,PF⊥AC于點(diǎn)F,求證:BE=CF;
(3)若AB=a,AC=b,則BE= ,AE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料
小明遇到這樣一個問題:求計(jì)算所得多項(xiàng)式的一次項(xiàng)系數(shù).
小明想通過計(jì)算所得的多項(xiàng)式解決上面的問題,但感覺有些繁瑣,他想探尋一下,是否有相對簡潔的方法.
他決定從簡單情況開始,先找所得多項(xiàng)式中的一次項(xiàng)系數(shù).通過觀察發(fā)現(xiàn):
也就是說,只需用中的一次項(xiàng)系數(shù)1乘以中的常數(shù)項(xiàng)3,再用中的常數(shù)項(xiàng)2乘以中的一次項(xiàng)系數(shù)2,兩個積相加,即可得到一次項(xiàng)系數(shù).
延續(xù)上面的方法,求計(jì)算所得多項(xiàng)式的一次項(xiàng)系數(shù).可以先用的一次項(xiàng)系數(shù)1, 的常數(shù)項(xiàng)3, 的常數(shù)項(xiàng)4,相乘得到12;再用的一次項(xiàng)系數(shù)2, 的常數(shù)項(xiàng)2, 的常數(shù)項(xiàng)4,相乘得到16;然后用的一次項(xiàng)系數(shù)3, 的常數(shù)項(xiàng)2, 的常數(shù)項(xiàng)3,相乘得到18.最后將12,16,18相加,得到的一次項(xiàng)系數(shù)為46.
參考小明思考問題的方法,解決下列問題:
(1)計(jì)算所得多項(xiàng)式的一次項(xiàng)系數(shù)為 .
(2)計(jì)算所得多項(xiàng)式的一次項(xiàng)系數(shù)為 .
(3)若計(jì)算所得多項(xiàng)式的一次項(xiàng)系數(shù)為0,則=_________.
(4)若是的一個因式,則的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值:
(1)-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=1,b=-2;
(2)-6x+3(3x2-1)-(9x2-x+3),其中x=-.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一張如圖①所示的長方形鐵皮四個角都剪去邊長為30cm的正方形,再四周折起,做成一個有底無蓋的鐵盒,如圖②.鐵盒底面長方形的長是4acm,寬是3acm.
(1)請用含有a的代數(shù)式表示圖①中原長方形鐵皮的面積;
(2)若要在鐵盒的外表面涂上某種油漆,每1元錢可涂油漆的面積為cm2,則在這個鐵盒的外表面涂上油漆需要多少錢(用含有a的代數(shù)式表示)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個木箱中裝有卡片共50張,這些卡片共有三種,它們分別標(biāo)有1、2、3的字樣,除此之外其他都相同,其中標(biāo)有數(shù)字2的卡片的張數(shù)是標(biāo)有數(shù)字3卡片的張數(shù)的3倍少8張.已知從箱子中隨機(jī)摸出一張標(biāo)有數(shù)字1卡片的概率是 .
(1)求木箱中裝有標(biāo)1的卡片張數(shù);
(2)求從箱子中隨機(jī)摸出一張標(biāo)有數(shù)字3的卡片的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=2,P是AB邊上一動點(diǎn),PD⊥AC于點(diǎn)D,點(diǎn)E在P的右側(cè),且PE=1,連結(jié)CE.P從點(diǎn)A出發(fā),沿AB方向運(yùn)動,當(dāng)E到達(dá)點(diǎn)B時,P停止運(yùn)動.在整個運(yùn)動過程中,圖中陰影部分面積S1+S2的大小變化情況是( )
A.一直減小
B.一直不變
C.先增大后減小
D.先減小后增大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com