如圖,AC為⊙O的直徑,AB為⊙O的弦,∠A=35°,過(guò)點(diǎn)C的切線與OB的延長(zhǎng)線相交于點(diǎn)D,則∠D=( )

A.20°
B.30°
C.40°
D.35°
【答案】分析:連接BC,則∠ABC=90°,且∠A=35°,∠OCB=55°,又△BCO為等腰三角形,即有∠COB=70°,即可求∠D=90°-∠COB=20°.
解答:解:連接BC,
∴∠OCD=90°,
∴∠OCB=55°,
在△OCB中,OB=OC;
即有∠COB=70°;
∴∠D=90°-∠COB=20°.
故選A.
點(diǎn)評(píng):本題利用了切線的概念和性質(zhì)的應(yīng)用以及三角形內(nèi)角和為180°的知識(shí)點(diǎn);在直角三角形中,同角或等角的余角相等;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點(diǎn).
精英家教網(wǎng)
(1)求等腰梯形DEFG的面積;
(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個(gè)單位的速度沿BC方向向右運(yùn)動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止.設(shè)運(yùn)動(dòng)時(shí)間為x秒,運(yùn)動(dòng)后的等腰梯形為DEF′G′(如圖2).
探究1:在運(yùn)動(dòng)過(guò)程中,四邊形BDG′G能否是菱形?若能,請(qǐng)求出此時(shí)x的值;若不能,請(qǐng)說(shuō)明理由;
探究2:設(shè)在運(yùn)動(dòng)過(guò)程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、(1)如圖1,已知直線m∥n,A,B為直線n上的兩點(diǎn),C,D為直線m上的兩點(diǎn).
①請(qǐng)你判斷△ABC與△ABD的面積具有怎樣的關(guān)系?
②若點(diǎn)D在直線m上可以任意移動(dòng),△ABD的面積是否發(fā)生變化?并說(shuō)明你的理由.
(2)如圖2,已知:在四邊形ABCD中,連接AC,過(guò)點(diǎn)D作EF∥AC,P為EF上任意一點(diǎn)(與點(diǎn)D不重合).請(qǐng)你說(shuō)明四邊形ABCD的面積與四邊形ABCP的面積相等.
(3)如圖3是一塊五邊形花壇的示意圖.為了使其更規(guī)整一些,園林管理人員準(zhǔn)備將其修整為四邊形,根據(jù)花壇周邊的情況,計(jì)劃在BC的延長(zhǎng)線上取一點(diǎn)F,沿EF取直,構(gòu)成新的四邊形ABFE,并使得四邊形ABFE的面積與五邊形ABCDE的面積相等.請(qǐng)你在圖3中畫出符合要求的四邊形ABFE,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖A、B兩個(gè)化工廠位于一段直線形河堤的同側(cè),A工廠至河堤的距離AC為1km,B工廠到河堤的距離BD為2km,經(jīng)測(cè)量河堤上C、D兩地間的距離為6km.現(xiàn)準(zhǔn)備在河堤邊修建一個(gè)污水處理廠,為使A、B兩廠到污水處理廠的排污管道最短,污水處理廠應(yīng)建在距C地多遠(yuǎn)的地方?
精英家教網(wǎng)
(2)通過(guò)以上解答,充分展開(kāi)聯(lián)想,運(yùn)用數(shù)形結(jié)合思想構(gòu)造圖形,嘗試解決下面問(wèn)題:若y=
x2+1
+
(9-x)2+4
,當(dāng)x為何值時(shí),y的值最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探索函數(shù)y=x+
1
x
(x>0)
的圖象和性質(zhì).
已知函數(shù)y=x(x>0)和y=
1
x
(x>0)
的圖象如圖所示,若P為函數(shù)y=x+
1
x
(x>0)
圖象上的點(diǎn),過(guò)P作PC垂直于x軸且與直線、雙曲線、x軸分別交于點(diǎn)A、B、C,則PC=x+
1
x
=AC+BC,從而“點(diǎn)P可以看作點(diǎn)A的沿豎直方向向上平移BC個(gè)長(zhǎng)度單位(PA=BC)而得到”.
(1)根據(jù)以上結(jié)論,請(qǐng)?jiān)谙聢D中作出函數(shù)y=x+
1
x
(x>0)圖象上的一些點(diǎn),并畫出該函數(shù)的圖象.
(2)觀察圖象,寫出函數(shù)y=x+
1
x
(x>0)兩條不同類型的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖(1),在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點(diǎn)為B.有人在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無(wú)蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi).已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)在如圖(2)建立的坐標(biāo)系下,求網(wǎng)球飛行路線的拋物線解析式;
(2)若豎直擺放5個(gè)圓柱形桶時(shí),則網(wǎng)球能落入桶內(nèi)嗎?說(shuō)明理由;
(3)若要使網(wǎng)球能落入桶內(nèi),求豎直擺放的圓柱形桶的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案