【題目】如圖,已知⊙O的半徑為5,直線l切⊙O于A,在直線l上取點(diǎn)B,AB=4.
(1)請用無刻度的直尺和圓規(guī),過點(diǎn)B作直線m⊥l,交⊙O于C、D(點(diǎn)D在點(diǎn)C的上方);(保留作圖痕跡,不要求寫作法)
(2)求BC的長.
【答案】(1)答案見解析;(2)2.
【解析】試題分析:(1)利用基本作圖(過一點(diǎn)作已知直線的垂線)作直線m得到CD;
(2)作OH⊥CD于H,連接OA、OD,如圖,利用垂徑定理得到DH=CH,則根據(jù)切線的性質(zhì)得OA⊥l,易得四邊形OABH為正方形,所以OH=AB=4,BH=OA=5,然后利用勾股定理計(jì)算出DH=3,則CH=3,所以BC=BH﹣CH=2.
試題解析:解:(1)如圖,CD為所作;
(2)作OH⊥CD于H,連接OA、OD,如圖,則DH=CH.∵直線l切⊙O于A,∴OA⊥l,易得四邊形OABH為正方形,∴OH=AB=4,BH=OA=5.在Rt△ODH中,DH==3,∴CH=3,∴BC=BH﹣CH=5﹣3=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個(gè)結(jié)論:
(1)二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
(2)拋物線與y軸交點(diǎn)為(0,-3);
(3)二次函數(shù)y=ax2+bx+c 的圖像對稱軸是x=1;
(4)本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D.
求證:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是線段CD的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BCD=110°,AB的垂直平分線交對角線AC于點(diǎn)F,E為垂足,連接DF,則∠CDF等于( 。
A. 15° B. 25° C. 45° D. 55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某校組織的“交通安全宣傳教育月”活動(dòng)中,八年級數(shù)學(xué)興趣小組的同學(xué)進(jìn)行了如下的課外實(shí)踐活動(dòng).具體內(nèi)容如下:在一段筆直的公路上選取兩點(diǎn)A、B,在公路另一側(cè)的開闊地帶選取一觀測點(diǎn)C,在C處測得點(diǎn)A位于C點(diǎn)的南偏西45°方向,且距離為100米,又測得點(diǎn)B位于C點(diǎn)的南偏東60°方向.已知該路段為鄉(xiāng)村公路,限速為60千米/時(shí),興趣小組在觀察中測得一輛小轎車經(jīng)過該路段用時(shí)13秒,請你幫助他們算一算,這輛小車是否超速?(參考數(shù)據(jù):≈1.41,≈1.73,計(jì)算結(jié)果保留兩位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的,若小方格邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)的頂點(diǎn),的坐標(biāo)分別為,.
(1)請?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)作出三角形關(guān)于y 軸對稱的三角形;
(3)判斷的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個(gè)式子的平方,如3+2=(1+)2,善于思考的小明進(jìn)行了以下探索:設(shè)a+b=(m+n)2(其中a,b,m,n均為正整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.這樣小明就找到了一種把a+b化為平方式的方法.
請你仿照小明的方法探索并解決下列問題.
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m、n的式子分別表示a、b,則a= ,b= ;
(2)求7+4的算術(shù)平方根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,每個(gè)小方格都是邊長為1個(gè)單位的小正方形,點(diǎn)A、B、C都是格點(diǎn)每個(gè)小方格的頂點(diǎn)叫格點(diǎn),其中,,.
外接圓的圓心坐標(biāo)是______;
外接圓的半徑是______;
已知與點(diǎn)D、E、F都是格點(diǎn)成位似圖形,則位似中心M的坐標(biāo)是______;
請?jiān)诰W(wǎng)格圖中的空白處畫一個(gè)格點(diǎn),使∽,且相似比為:1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,點(diǎn)C的坐標(biāo)為(﹣2,0),點(diǎn)A的坐標(biāo)為(﹣6,3),求點(diǎn)B的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com