【題目】如圖,∠MAN=30°,點(diǎn)O為邊AN上一點(diǎn),以O為圓心,4為半徑
作⊙O交AN于D、E兩點(diǎn).
⑴ 當(dāng)⊙O與AM相切時(shí),求AD的長(zhǎng);
⑵ 如果AD=2,那么AM與⊙O又會(huì)有怎樣的位置關(guān)系?并說明理由.
【答案】(1)4;(2) AM與⊙O相交,理由見解析
【解析】分析:(1)在Rt△AOF中,由OF求得AO,即可求解;(2)在Rt△AOF中,由AO求得OF的長(zhǎng),比較它與圓的半徑之間的大小.
詳解:⑴如圖1,設(shè)切點(diǎn)為F,連接FO,
∵⊙O與AM相切于點(diǎn)F,OF為半徑,
∴FO⊥AM,∴∠AFO=90°.
∵∠A=30°,OF=4,
∴AO=2OF,AD=AO–DO=8-4=4.
⑵AM與⊙O相交.
理由:如圖2,過點(diǎn)O作OF⊥AM于F,
∴∠AFO=90°,
∵AD=2,DO=4;∴AO=AD+DO=6,又∠A=30°,
∴OF=AO=×6=3<4,
∴AM與⊙O相交.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為 時(shí),四邊形AMDN是矩形;②當(dāng)AM的值為 時(shí),四邊形AMDN是菱形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=﹣x+2與x軸、y軸分別交于點(diǎn)A、點(diǎn)C,拋物線經(jīng)過點(diǎn)A、點(diǎn)C,且與x軸的另一個(gè)交點(diǎn)為B(﹣1,0).
(1)求拋物線的解析式;
(2)點(diǎn)D為第一象限內(nèi)拋物線上的一動(dòng)點(diǎn).
①如圖1,若CD=AD,求點(diǎn)D的坐標(biāo);
②如圖2,BD與AC交于點(diǎn)E,求S△CDE:S△CBE的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)三位自然數(shù)m,將它任意兩個(gè)數(shù)位上的數(shù)字對(duì)調(diào)后得一個(gè)首位不為0 的新三位自然數(shù) m’( m’可以與m相同),記m’=,在 m’ 所有的可能情況中,當(dāng)|a+2b-c| 最小時(shí),我們稱此時(shí)的m’ 是m 的“幸福美滿數(shù)”,并規(guī)定K (m) = a2 +2b2 -c2.例如:318按上述方法可得新數(shù)有:381、813 、138 ;因?yàn)?/span>|3+28-1|= 18 ,|8+ 21-3|=7,|1 +23-8|=1,1< 7<18 ,所以138 是318的“幸福美滿數(shù)”,K(318)=|12+232-82|=-45.
(1)若三位自然數(shù)t的百位上的數(shù)字與十位上的數(shù)字都為n(1≤n ≤ 9 ,n為自然數(shù)),個(gè)位上的數(shù)字為0 ,求證:K (t )= 0;
(2)設(shè)三位自然數(shù)s=100+10x + y(1≤ x ≤ 9,1≤y≤9, ,x y 為自然數(shù)) ,且x<y .交換其個(gè)位與十位上的數(shù)字得到新數(shù)s’,若19s+8s’=3888,那么我們稱s為“夢(mèng)
想成真數(shù)”,求所有“夢(mèng)想成真數(shù)”中K (s )的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字3、4、5.從袋子中隨機(jī)取出一個(gè)小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個(gè)小球,用小球上的數(shù)字作為個(gè)位上的數(shù)字,這樣組成一個(gè)兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個(gè)位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公園門票價(jià)格規(guī)定如下表:
購票張數(shù) | 1~50張 | 51~100張 | 100張以上 |
每張票的價(jià)格 | 15元 | 13元 | 11元 |
某校七年級(jí)(1)(2)兩個(gè)班共102人去游園,其中(1)班超過40人,不足50人,經(jīng)估算,如果兩個(gè)班都以班為單位購票,則一共應(yīng)付1422元.問:
(1)兩個(gè)班各有多少學(xué)生?
(2)如果兩個(gè)班聯(lián)合起來,作為一個(gè)團(tuán)體購票,可比兩個(gè)班都以班為單位購票省多少元錢?
(2)如果七年級(jí)(1)班單獨(dú)組織去游園,作為組織者的你如何購票才最省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的頂點(diǎn)G在菱形對(duì)角線AC上運(yùn)動(dòng),角的兩邊分別交邊BC、CD于E、F.
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/6b570bc424f747a8be031e9f971720ec.png]
(1)如圖甲,當(dāng)頂點(diǎn)G運(yùn)動(dòng)到與點(diǎn)A重合時(shí),求證:EC+CF=BC;
(2)知識(shí)探究:
①如圖乙,當(dāng)頂點(diǎn)G運(yùn)動(dòng)到AC的中點(diǎn)時(shí),請(qǐng)直接寫出線段EC、CF與BC的數(shù)量關(guān)系(不需要寫出證明過程);
②如圖丙,在頂點(diǎn)G運(yùn)動(dòng)的過程中,若,探究線段EC、CF與BC的數(shù)量關(guān)系;
(3)問題解決:如圖丙,已知菱形的邊長(zhǎng)為8,BG=7,CF=,當(dāng)>2時(shí),求EC的長(zhǎng)度。
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/1671b8ec524a49feac7097357d4ff9a8.png]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com