(10分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過
點D作EF⊥AC于點E,交AB的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)當∠BAC=60º時,DE與DF有何數(shù)量關系?請說明理由;
(3)當AB=5,BC=6時,求tan∠BAC的值.
(1) 證明:連結OD,
∵AB=AC,∴∠2=∠C
又∵OD=OB,∴∠2=∠1
∴∠1=∠C
∴OD∥AC
∵EF⊥AC
∴OD⊥EF
∴EF是⊙O的切線。
(2)DE與DF的數(shù)量關系為:DF=2DE。理由如下:
連結AD
∵AB是⊙O的直徑,∴AD⊥BC,
∵AB=AC。 ∴∠3=∠4=∠BAC=30°
∵∠F=90°-∠BAC=90°-60°=30°, ∴∠3=∠F
∴AD=DF
∵∠4=30°,EF⊥AC,∴AD=2DE
∴DF=2DE.
(3)解:設⊙O與AC的交點為P,連結BP,則BP⊥AC,由上知BD=BC=3
∴
∴
∴
∴
∴tan∠BAC=
【解析】略
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(本題滿分10分)如圖,在平面直角坐標系中,O為原點,每個小方格的邊長為1個單位長度.在第一象限內有橫、縱坐標均為整數(shù)的A、B兩點,且OA= OB=.
(1)寫出A、B兩點的坐標;
(2)畫出線段AB繞點O旋轉一周所形成的圖形,并求其面積(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年人教版九年級第一學期期末考試數(shù)學卷 題型:解答題
(本題10分)如圖,在中,,,,動點從點開始沿邊向以的速度移動(不與點重合),動點從點開始沿邊向以的速度移動(不與點重合).如果、分別從、同時出發(fā),那么
(1)經過多少秒,四邊形的面積最;(2)面積最小是多少?
(第25題圖)
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年上海市徐匯區(qū)中考一模數(shù)學卷 題型:解答題
(本題滿分10分)
如圖,在中,點在邊上,點在邊上,且∥,.
【小題1】(1)求證:∥;(5分)
【小題2】(2)如果,,求的值.(5分)
查看答案和解析>>
科目:初中數(shù)學 來源:2013屆浙江臨安於潛第一初級中學九年級上期末綜合考試數(shù)學試卷(一)(帶解析) 題型:解答題
(本題10分)
如圖,在正△ABC中,點D是AC的中點,點E在BC上,且 = .求證:
(1)△ABE∽△DCE;
(2),求
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com