【題目】如圖所示,I是△ABC三內角平分線的交點,IE⊥BC于E,AI延長線交BC于D,CI的延長線交AB于F,下列結論:①∠BIE=∠CID;②S△ABC=IE(AB+BC+AC);③BE=(AB+BC﹣AC);④AC=AF+DC.其中正確的結論是_____.
【答案】①②③.
【解析】①∵I為△ABC三條角平分線的交點,IE⊥BC于E,
∴∠ABI=∠IBD,
∵∠DIC=∠DAC+∠ACI=(∠BAC+∠ACB),∠ABI=∠ABC,
∴∠CID+∠ABI=90°,
∵IE⊥BC于E,
∴∠BIE+∠IBE=90°,
∵∠ABI=∠IBE,
∴∠BIE=∠CID;
即①成立;
②∵I是△ABC三內角平分線的交點,
∴點I到△ABC三邊的距離相等,
∴S△ABC=S△ABI+S△BCI+S△ACI=ABIE+BCIE+ACIE=IE(AB+BC+AC),
即②成立;
③如圖,過I作IH⊥AB于H,IG⊥AC于G,
∵I是△ABC三內角平分線的交點,
∴IE=IH=IG,
在Rt△AHI與Rt△AGI中,
,
∴Rt△AHT≌Rt△AGI(HL),
∴AH=AG,同理BE=BH,CE=CG,
∴BE+BH=AB+BC﹣AH﹣CE=AB+BC﹣AC,
∴BE=(AB+BC﹣AC);
即③成立;
④由③證得IH=IE,
∵∠FHI=∠IED=90°,
∴△IHF與△DEI不一定全等,
∴HF不一定等于DE,
∴AC=AG+CG=AH+CE≠AF+CD,
即④錯誤.
故答案為:①②③.
科目:初中數學 來源: 題型:
【題目】兩塊等腰直角三角形紙片AOB和COD按圖①所示放置,直角頂點重合在點O處,AB=25.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉α(0°<α<90°)角度,如圖②所示.
(1)在圖②中,求證:AC=BD,且AC⊥BD;
(2)當BD與CD在同一直線上(如圖③)時,若AC=7,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為創(chuàng)建大數據應用示范城市,我市某機構針對市民最關心的四類生活信息進行了民意調查(被調查者每人限選一項),下面是部分四類生活信息關注度統(tǒng)計圖表,請根據圖中提供的信息解答下列問題:
(1)本次參與調查的人數有______ 人;
(2)關注城市醫(yī)療信息的有______ 人,并補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中,D部分的圓心角是______度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平行四邊形ABCD中,∠BAD的平分線交線段BC于點E,交線段DC的延長線于點F,以EC、CF為鄰邊作平行四邊形ECFG.
(1)如圖1,證明平行四邊形ECFG為菱形;
(2)如圖2,若∠ABC=90°,M是EF的中點,求∠BDM的度數;
(3)如圖3,若∠ABC=120°,請直接寫出∠BDG的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果一元一次方程的解也是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關聯(lián)方程.
例如:方程 的解為 ,不等式組 的解集為 ,因為 ,所以,稱方程為不等式組的關聯(lián)方程.
(1)在方程①,②,③中,不等式組 的關聯(lián)方程是 ;(填序號)
(2)若不等式組的一個關聯(lián)方程的根是整數,則這個關聯(lián)方程可以是 ;(寫出一個即可)
(3)若方程,都是關于的不等式組的關聯(lián)方程,求的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】水果市場將120噸水果運往各地商家,現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設每輛車均滿載)
車型 | 甲 | 乙 | 丙 |
汽車運載量(噸/輛) | 5 | 8 | 10 |
汽車運費(元/輛) | 400 | 500 | 600 |
(1)若全部水果都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?
(2)為了節(jié)約運費,市場可以調用甲、乙、丙三種車型參與運送(每種車型至少1輛),已知它們的總輛數為16輛,你能通過列方程組的方法分別求出幾種車型的輛數嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=45°,以AB為直徑的⊙O交BC于點D,若BC=4 ,則圖中陰影部分的面積為( )
A.π+1
B.π+2
C.2π+2
D.4π+1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數;
(2)若CD=2,求DF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:課外興趣小組活動時,老師提出了如下問題:
如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內經過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE(或將△ACD繞點D逆時針旋轉180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關系可得2<AE<8,則1<AD<4.
感悟:解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮構造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結論集中到同一個三角形中.
(1)問題解決:受到(1)的啟發(fā),請你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.
①求證:BE+CF>EF;②若∠A=90°,探索線段BE、CF、EF之間的等量關系,并加以證明;
(2)問題拓展:如圖3,在平行四邊形ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,聯(lián)結EF、CF,那么下列結論①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.中一定成立是 (填序號).
圖1 圖2 圖3
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com