(2010•江津區(qū))如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論中正確的個(gè)數(shù)有①∠EAF=45°;②△ABE∽△ACD;③AE平分∠CAF;④BE2+DC2=DE2( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】分析:①根據(jù)旋轉(zhuǎn)的性質(zhì)知∠CAD=∠BAF,因?yàn)椤螧AC=90°,∠DAE=45°,所以∠CAD+∠BAE=45°,可得∠EAF=45°;
②因?yàn)椤螩AD與∠BAE不一定相等,所以△ABE與△ACD不一定相似;
③根據(jù)SAS可證△ADE≌△AFE,得∠AED=∠AEF;DE=EF;
④BF=CD,EF=DE,∠FBE=90°,根據(jù)勾股定理判斷.
解答:解:①根據(jù)旋轉(zhuǎn)的性質(zhì)知∠CAD=∠BAF.
∵∠BAC=90°,∠DAE=45°,
∴∠CAD+∠BAE=45°.
∴∠EAF=45°,故①正確;
②因?yàn)椤螩AD與∠BAE不一定相等,所以△ABE與△ACD不一定相似,故②錯(cuò)誤;
③∵AF=AD,∠FAE=∠DAE=45°,AE=AE,
∴△ADE≌△AFE,得∠AED=∠AEF,
即AE平分∠DAF,故③錯(cuò)誤;
④∵∠FBE=45°+45°=90°,
∴BE2+BF2=EF2(勾股定理),
∵△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△AFB,∴△AFB≌△ADC,∴BF=CD,
又∵EF=DE,
∴BE2+CD2=DE2(等量代換).故④正確.
故選B.
點(diǎn)評(píng):此題主要考查圖形的旋轉(zhuǎn)變換,解題時(shí)注意旋轉(zhuǎn)前后對(duì)應(yīng)的相等關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2010•江津區(qū))如圖,拋物線y=ax2+bx+1與x軸交于兩點(diǎn)A(-1,0),B(1,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)過點(diǎn)B作BD∥CA拋物線交于點(diǎn)D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點(diǎn)M,過M作MN⊥x軸于點(diǎn)N,使以A、M、N為頂點(diǎn)的三角形與△BCD相似?若存在,則求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2010•江津區(qū))如圖,拋物線y=ax2+bx+1與x軸交于兩點(diǎn)A(-1,0),B(1,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)過點(diǎn)B作BD∥CA拋物線交于點(diǎn)D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點(diǎn)M,過M作MN⊥x軸于點(diǎn)N,使以A、M、N為頂點(diǎn)的三角形與△BCD相似?若存在,則求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•江津區(qū))如圖,拋物線y=ax2+bx+1與x軸交于兩點(diǎn)A(-1,0),B(1,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)過點(diǎn)B作BD∥CA拋物線交于點(diǎn)D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點(diǎn)M,過M作MN⊥x軸于點(diǎn)N,使以A、M、N為頂點(diǎn)的三角形與△BCD相似?若存在,則求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二元一次方程組》(03)(解析版) 題型:解答題

(2010•江津區(qū))如圖,拋物線y=ax2+bx+1與x軸交于兩點(diǎn)A(-1,0),B(1,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)過點(diǎn)B作BD∥CA拋物線交于點(diǎn)D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點(diǎn)M,過M作MN⊥x軸于點(diǎn)N,使以A、M、N為頂點(diǎn)的三角形與△BCD相似?若存在,則求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年重慶市江津區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•江津區(qū))如圖,拋物線y=ax2+bx+1與x軸交于兩點(diǎn)A(-1,0),B(1,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)過點(diǎn)B作BD∥CA拋物線交于點(diǎn)D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點(diǎn)M,過M作MN⊥x軸于點(diǎn)N,使以A、M、N為頂點(diǎn)的三角形與△BCD相似?若存在,則求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案