【題目】如圖,AB⊥CD,CD⊥BD,∠A=∠FEC.以下是小貝同學(xué)證明CD∥EF的推理過程或理由,請你在橫線上補充完整其推理過程或理由.
證明:∵AB⊥CD,CD⊥BD(已知)
∴∠ABD=∠CDB=90°()∴∠ABD+∠CDB=180°.
∴AB∥()(
∵∠A=∠FEC(已知)
∴AB∥()(
∴CD∥EF(

【答案】垂直定義;CD;同旁內(nèi)角互補,兩直線平行;EF;同位角相等,兩直線平行;平行于同一條直線的兩直線平行
【解析】證明:∵AB⊥BD,CD⊥BD(已知),
∴∠ABD=∠CDB=90°(垂直定義),
∴∠ABD+∠CDB=180°.
∴AB∥CD(同旁內(nèi)角互補,兩直線平行),
∵∠A=∠FEC(已知),
∴AB∥EF(同位角相等,兩直線平行),
∴CD∥EF(平行于同一條直線的兩條直線平行).
所以答案是:垂直定義;CD;同旁內(nèi)角互補,兩直線平行;EF;同位角相等,兩直線平行;平行于同一條直線的兩直線平行.
【考點精析】關(guān)于本題考查的平行線的判定與性質(zhì),需要了解由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點A,O,B表示的數(shù)分別為﹣3,0,1,點P為數(shù)軸上任意一點,其表示的數(shù)為x.
(1)如果點P到點A,點B的距離相等,那么x=;
(2)當(dāng)x=時,點P到點A,點B的距離之和是6;
(3)若點P到點A,點B的距離之和最小,則x的取值范圍是
(4)在數(shù)軸上,點M,N表示的數(shù)分別為x1 , x2 , 我們把x1 , x2之差的絕對值叫做點M,N之間的距離,即MN=|x1﹣x2|.若點P以每秒3個單位長度的速度從點O沿著數(shù)軸的負(fù)方向運動時,點E以每秒1個單位長度的速度從點A沿著數(shù)軸的負(fù)方向運動、點F以每秒4個單位長度的速度從點B沿著數(shù)軸的負(fù)方向運動,且三個點同時出發(fā),那么運動秒時,點P到點E,點F的距離相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種運動鞋每雙按成本價提高25%后標(biāo)價,后因處理庫存每雙按標(biāo)價的9折出售,若毎雙鞋的出售價是90元,則每雙鞋的成本價是元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x2﹣3y﹣5=0,則6y﹣2x2﹣6的值為(
A.4
B.﹣4
C.16
D.﹣16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=2x+1經(jīng)過點(0,a),則a=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=(1m)xm2,當(dāng)m________時,yx的增大而增大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BB1∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設(shè)點D運動的時間為t秒.

(1)當(dāng)t為何值時,AD=AB,并求出此時DE的長度;

(2)當(dāng)△DEG與△ACB相似時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是(  )

A. x2+x2x4B. 2x3x3x3C. x2x3x6D. (x2)3x5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在實數(shù)|3|,﹣20,1中最小的數(shù)是(  )

A. |3|B. 1C. 0D. 2

查看答案和解析>>

同步練習(xí)冊答案