【題目】如圖,C為以AB為直徑的⊙O上一點(diǎn),AD和過(guò)點(diǎn)C的切線互相垂直,垂足為點(diǎn)D.
(1)求證:AC平分∠BAD;
(2)若CD=3,AC=3,求⊙O的半徑長(zhǎng).
【答案】(1)證明:連結(jié)OC(如圖所示)
則∠ACO=∠CAO (等腰三角形,兩底角相等)
∵CD切⊙O于C,∴CO⊥CD.
又∵AD⊥CD
∴AD∥CO
∴∠DAC=∠ACO (兩直線平行,內(nèi)錯(cuò)角相等)
∴∠DAC=∠CAO
∴AC平分∠BAD ----------------5分
(2)過(guò)點(diǎn)E畫(huà)OE⊥AC于E(如圖所示)
在Rt△ADC中,AD==6
∵OE⊥AC, ∴AE=AC=
∵ ∠CAO=∠DAC,∠AEO=∠ADC=Rt∠
∴△AEO∽△ADC
∴即
∴AO=即⊙O的半徑為. ----------------5分
【解析】
試題(1)首先連接OC,由CD切⊙O于C,根據(jù)切線的性質(zhì),可得OC⊥CD,又由AD⊥CD,可得OC∥AD,又由OA=OC,易證得∠DAC=∠CAO,即AC平分∠BAD;
(2)首先過(guò)點(diǎn)O作OE⊥AC于E,由CD=3,AC=3,在Rt△ADC中,利用勾股定理即可求得AD的長(zhǎng),由垂徑定理,即可得AE的長(zhǎng),然后易證得△AEO∽△ADC,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得⊙O的半徑長(zhǎng).
試題解析:(1)證明:連接OC,
∵OA=OC,
∴∠ACO=∠CAO,
∵CD切⊙O于C,
∴CO⊥CD.
又∵AD⊥CD,
∴AD∥CO,
∴∠DAC=∠ACO,
∴∠DAC=∠CAO,
∴AC平分∠BAD;
(2)解:過(guò)點(diǎn)O作OE⊥AC于E,
∵CD=3,AC=3,
在Rt△ADC中,AD=,
∵OE⊥AC,
∴AE=AC=,
∵∠CAO=∠DAC,∠AEO=∠ADC=90°,
∴△AEO∽△ADC,
∴,
即,
∴AO=,
即⊙O的半徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(-2,n),B(1,-2)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫(xiě)出,當(dāng)kx+b<時(shí),x的取值范圍;
(3)若C是x軸上一動(dòng)點(diǎn),設(shè)t=CB-CA,求t的最大值,并求出此時(shí)點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為矩形,四邊形為菱形.
求證:;
試探究:當(dāng)矩形邊長(zhǎng)滿足什么關(guān)系時(shí),菱形為正方形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),延長(zhǎng)CE,BA交于點(diǎn)F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當(dāng)CF平分∠BCD時(shí),寫(xiě)出BC與CD的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)邊長(zhǎng)為3的等邊△ABC的邊AB上一點(diǎn)P,作PE⊥AC于E,Q為BC延長(zhǎng)線上一點(diǎn),當(dāng)PA=CQ時(shí),連PQ交AC邊于D,則DE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,平分,交于點(diǎn),過(guò)點(diǎn)作,交的延長(zhǎng)線于點(diǎn),交的延長(zhǎng)線于點(diǎn),
(1)求證:;
(2)如圖,連接、,求證平分;
(3)如圖,連接交于點(diǎn), 求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一艘輪船在處測(cè)得燈塔在船的南偏東60°方向,輪船繼續(xù)向正東航行30海里后到達(dá)處,這時(shí)測(cè)得燈塔在船的南偏西75°方向,則燈塔離觀測(cè)點(diǎn)、的距離分別是( )
A.海里、15海里B.海里、15海里
C.海里、海里D.海里、海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形內(nèi)接于半圓,為直徑,,過(guò)點(diǎn)作于點(diǎn),連接交于點(diǎn)F.若,,則的長(zhǎng)為 ( 。
A.8B.10C.15D.24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.
(1)請(qǐng)問(wèn)1輛甲種客車與1輛乙種客車的載客量分別為多少人?
(2)某學(xué)校組織240名師生集體外出活動(dòng),擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點(diǎn).若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請(qǐng)給出最節(jié)省費(fèi)用的租車方案,并求出最低費(fèi)用.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com