【題目】如圖,平面直角坐標(biāo)系中,直線x軸交于點A,與雙曲線在第一象限內(nèi)交于點BBCx軸于點C,OC=2AO

1)求雙曲線的解析式.

2)點Dy軸上一個動點,若SADB=3,求點D的坐標(biāo).

【答案】1y=;(2(0)(0,)

【解析】

(1)先利用一次函數(shù)與圖象的交點,再利用OC=2AO求得C點的坐標(biāo),然后代入一次函數(shù)求得點B的坐標(biāo),進(jìn)一步求得反比例函數(shù)的解析式即可;

(2)先求得直線y軸交于點E的坐標(biāo),設(shè)點D的坐標(biāo)為(0,m),得到DE=|m|,利用SADB=SADE+SBDE=3,即可求解.

(1)對于直線,

,則,

∴直線x軸交于點A的坐標(biāo)為(﹣1,0),

OA=1,

又∵OC=2OA,

OC=2

∴點B的橫坐標(biāo)為2,

代入直線,得y=,

∴點B的坐標(biāo)為(2,).

∵點B在雙曲線上,

=3,

∴雙曲線的解析式為y=;

(2)如圖1

對于直線,

,則,

∴直線y軸交于點E的坐標(biāo)為(0),

設(shè)點D的坐標(biāo)為(0,m),連接AD、BD,

DE=|m|

SADB=SADE+SBDE=3,

×|m(2+1)=3,

|m|=2

解得:=

∴點D的坐標(biāo)為(0,)或(0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,,AC=3,BC=4.點O為邊AB上一點(不與A重合)⊙O是以點O為圓心,AO為半徑的圓.當(dāng)⊙O與三角形邊的交點個數(shù)為3時,則OA的范圍(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解員工安全生產(chǎn)知識掌握情況,隨機抽取了部分員工進(jìn)行安全生產(chǎn)知識測試,測試試卷滿分100分.測試成績按A、B、C、D四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.(說明:測試成績?nèi)≌麛?shù),A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)

請解答下列問題:

1)該企業(yè)員工中參加本次安全生產(chǎn)知識測試共有 人;

2)補全條形統(tǒng)計圖;

3)若該企業(yè)共有員工800人,試估計該企業(yè)員工中對安全生產(chǎn)知識的掌握能達(dá)到A級的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵市民節(jié)約用水,某市自來水公司按分段收費標(biāo)準(zhǔn)收費,右圖反映的是每月收水費y(元)與用水量x(噸)之間的函數(shù)關(guān)系

1)小紅家五月份用水8噸,應(yīng)交水費_____元;

2)按上述分段收費標(biāo)準(zhǔn),小紅家三、四月份分別交水費36元和19.8元,問四月份比三月份節(jié)約用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察猜想:

1)如圖1,在RtABC中,∠ACB90°,∠BAC30°,點D與點C重合,點E在斜邊AB上,連接DE,且DEAE,將線段DE繞點D順時針旋轉(zhuǎn)90°得到線段DF,連接EF,則______sinADE________,

探究證明:

2)在(1)中,如果將點D沿CA方向移動,使CDAC,其余條件不變,如圖2,上述結(jié)論是否保持不變?若改變,請求出具體數(shù)值:若不變,請說明理由.

拓展延伸

3)如圖3,在△ABC中,∠ACB90°,∠CABa,點D在邊AC的延長線上,EAB上任意一點,連接DEEDnAE,將線段DE繞著點D順時針旋轉(zhuǎn)90°至點F,連接EF.求sinADE的值分別是多少?(請用含有n,a的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,并回答問題:

定義:平面內(nèi)與一個定點F和一條定直線ll不經(jīng)過點F)距離相等的所有點組成的圖形叫拋物線.點F叫做拋物線的焦點,直線l叫做拋物線的準(zhǔn)線.

應(yīng)用:(1)如圖1,一條拋物線的焦點為F(01),準(zhǔn)線為過點(0,-1)且平行于x軸的直線l;設(shè)點P(x,y)為拋物線上任意一點,小聰同學(xué)在應(yīng)用定義求這條拋物線的解析式時作出了如下不完整的解答,請你將余下部分補充出來.

解:設(shè)點P(x,y)為拋物線上任意一點,作PMl于點M,則PM=_________

PNy軸于點N,則在PFN中,有PN=,NF=,所以PF=__________

PF=PM

_________=____________,

將方程兩邊同時平方,解得拋物線的解析式為_____________

2)如圖2,在(1)的條件下,點A(1,3)是坐標(biāo)平面內(nèi)一點,則FAP的周長最小值為________

3)在(1)(2)的條件下,如圖3,點B(4,4)是坐標(biāo)平面內(nèi)另一點,過PPHl,垂足為H,連接PFFH,問在拋物線上是否存在點P,使得以P,F,H為頂點的三角形與ABO相似?若存在,求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對任意一個四位正整數(shù)數(shù)m,若其千位與百位上的數(shù)字之和為9,十位與個位上的數(shù)字之和也為9,那么稱m為“重九數(shù)”,如:1827、3663.將“重九數(shù)”m的千位數(shù)字與十位數(shù)字對調(diào),百位數(shù)字與個位數(shù)字對調(diào),得到一個新的四位正整數(shù)數(shù)n,如:m2718,則n1827,記Dmn)=m+n

1)請寫出兩個四位“重九數(shù)”:   ,   

2)求證:對于任意一個四位“重九數(shù)”m,其Dm,n)可被101整除.

3)對于任意一個四位“重九數(shù)”m,記fmn)=,當(dāng)fmn)是一個完全平方數(shù)時,且滿足mn,求滿足條件的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.事件在一張紙上隨意畫兩個直角三角形,這兩個直角三角形相似是確定事件

B.如果一組數(shù)據(jù)為,其平均數(shù)為那么這組數(shù)據(jù)的方差為

C.事件的面積是,則它的一邊長與這邊上的高h的函數(shù)關(guān)系式為是隨機事件

D.從一個裝有個紅球和個黑球的袋子中任取一球,取到的是黑球符合如右圖所示的用頻率估計概率的實驗得出的頻率折線圖(如圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形紙片的邊長為,翻折,使兩個直角頂點重合于對角線上一點分別是折痕,設(shè),給出下列判斷:

①當(dāng)時,點是正方形的中心;

②當(dāng)時,;

③當(dāng)時,六邊形面積的最大值是

④當(dāng)時,六邊形周長的值不變.

其中錯誤的是(

A.②③B.③④C.①④D.①②

查看答案和解析>>

同步練習(xí)冊答案